期刊文献+

小波变换与分块统计在掌纹识别中的应用 被引量:4

Application of wavelet transform and block statistic to palmprint recognition
在线阅读 下载PDF
导出
摘要 用于身份鉴别的掌纹识别为信息安全提供了一种新的方案。提出一种变换域和统计域相结合的掌纹识别方法。对掌纹感兴趣区域(ROI)进行中值滤波再多级小波分解,对所有的高频子图像进行分块,求取每一子块高频系数的均值和方差,它们的组合构成该图像的特征向量,利用简单的最近邻分类器进行分类。运用UST掌纹图像库,对该算法进行了测试。从识别率为95.5%的实验结果看,该方法优于目前在掌纹识别上使用较多的子空间法。 Palmprint recognition for identification provides a new scheme for information security.This paper presents a com-bination method of transform domain and statistic domain for palmprint identification.The method filters Region Of Interest(ROI) of the palmprint with median filtering and decomposes it into several sub-images with the wavelet transform.Then it blocks the high-frequency sub-image.The mean and the variance of high-frequency coefficients for each sub-block are found.Their combination constitutes feature vector for the image.The nearest neighbor classifier is used to classify the images.The method is tested on the basis of UST palmprint image database.From the experimental result of 95.5% recognition rate,the method is better than the sub-space methods that are used for palmprint identification at present.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第24期17-19,22,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60972123) 辽宁省教育厅科研项目(No.L2010436)~~
关键词 生物特征识别 掌纹识别 小波变换 分块统计 高频系数 biometrics recognition palmprint recognition wavelet transform block statistic high-frequency coefficients
  • 相关文献

参考文献20

  • 1王艳霞,阮秋琦.一种掌纹纹线结构特征的描述和匹配方法[J].电子与信息学报,2008,30(6):1281-1285. 被引量:3
  • 2Jia W, Gui J, Hu R X, et al,Palmprint recognition using kernel spectral regression discriminant analysis and HOG representation[C]//2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics(ETCHB),2010,8:1-6.
  • 3Pan X, Ruan Q Q.Palmprint recognition with improved two- dimensional locality preserving projeetions[J].Image and Vision Computing, 2008,26 (9) : 1261-1268.
  • 4Ong M G K,Connie T,Teoh A B J.Touch-less palm print bio- metrics:novel design and implementation[J].Image and Vision Computing, 2008,26 (12) : 1551 - 1560.
  • 5Pan X, Ruan Q Q.Palmprint recognition using Gabor-based local invariant features[J].Neurocomputing Letters,2009,72:2040-2045.
  • 6Zhang D, Kong W, You J.Online palmprint identification[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25 (9) : 1041-1050.
  • 7Jia W, Huang D S, Zhang D.Palmprint verification based on robust line orientation code[J].Pattem Recognition,2008,41 (5) : 1504-1513.
  • 8Hsieh P C,Tung P C.A novel hybrid approach based on sub- pattern technique and whitened PCA for face recognition[J].Pat- tern Recognition,2009,42(5) :978-984.
  • 9李春芝,陈晓华,蒋云良,张士雄.基于掌纹、人脸关联特征的身份识别算法[J].电路与系统学报,2010,15(3):86-90. 被引量:2
  • 10Wang J, Barreto A, Wang L, et al.Multilinear principal component analysis for face recognition with fewer features[J].Neurocomputing,2010,73 : 1550-1555.

二级参考文献59

共引文献33

同被引文献34

  • 1黄志勇,孙光民,李芳.基于RGB视觉模型的交通标志分割[J].微电子学与计算机,2004,21(10):147-148. 被引量:42
  • 2YAO Yong-fang, JING Xiao-yuan, WONG Han-san. Face and palmprint feature level fusion for single sample bio- metrics recognition[J]. Neurocomputing, 2007,70 ( 7-9 ) : 1582-1586.
  • 3SHEN Lin-lin, BAI Li, JI Zhen. Hand-based biometrics fu- sing palmprint and finger-knuckle-print[A]. International workshop on emerging techniques and challenges for hand-based biometrics[C]. 2010,1-4.
  • 4ZHANG Yan-qiang, SUN Dong-mei, QIU Zheng-ding. Hand- based feature level fusion for single sample biometrics recognition[A]. International workshop On emerging tech- niques and challenges for hand-based biometrics[C]. 2010,1-4.
  • 5ZHANG Yan-qiang, SUN Dong-mei, QIU Zheng-ding. Hand- based single sample biometrics recognition[A]. Neural Computing & Applications[C]. 2011,1-10.
  • 6GUO Jin-yu, LIU Yu-qin, YUAN Wei-qi. Palmprint recogni-tion using local information from a single image per per- son[J]. Journal of Computational Information Systems, 2012,8(8) :3199-3206.
  • 7Fujiwara Koichi, Kano Manabu, Hasebe Shinji. Develop- ment of correlation-based pattern recognition algorithm and adaptive soft-sensor design[J]. Control Engineering Practice,2012,20(4) :371-378.
  • 8Fujiwara Koichi, Kano Manabu, Hasebe Shinji. Soft-sensor development using correlation-based just-in-time model- ing[J]. AIChE Journal, 2009,55 (7) : 1754-1765.
  • 9Kohir V V,Desai U B. Face recognition using a DCT-HMM approach[A]. Proc. of the Fourth IEEE Workshop on Ap- plications of Computer Vision[C]. ]998,226-231.
  • 10WANG Lin, LI Yong-ping, WANG Cheng-bo, et al. 2D gaborface representation method for face recognition with ensemble and multichannel model[J]. Image and Vision Computing, 2007,26 (6) : 820-828.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部