期刊文献+

具有优美结构的紧支正交小波的构造 被引量:15

原文传递
导出
摘要 给出了一种构造对称(反对称)尺度和小渡滤波器的新方法,得到了一类具有优美结构的小波系统.利用这类小波系统,可以得到有理、对称或反对称、较小支集且比较光滑的滤波器,该类系统具有较好的应用前景.
出处 《中国科学(E辑)》 CSCD 北大核心 2004年第2期200-210,共11页 Science in China(Series E)
基金 国家自然科学基金(批准号:90104004 10271012) "九七三"(1999275105)资助项目
  • 相关文献

参考文献8

  • 1[1]Daubechies I. Orthonormal bases of compact supported wavelets. Comm Pure and Appl Math, 1988, 41:909~996
  • 2[2]Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
  • 3[3]Steffen P, Heller P, Gopinath R A, et al. Theory of regular M-band wavelet bases. IEEE Trans on Signal Processing, 1993, 41:3497~3511
  • 4[4]Chui C, Lian J A. Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3. Appl Comput Harmon Anal, 1995, 2:68~84
  • 5[5]Belogay E, Wang Y. Compactly supported orthogonal symmetric scaling functions. Appl Comput Harmon Anal, 1999, 7:137~150
  • 6[6]Jawerth B, Peng Lizhong. Compactly supported orthogonal wavelets on the Heisenberg group. Research Report No. 45. 2001
  • 7[7]Sherman D R, Shen Zuowei. Wavelets and pre-wavelets in low dimensions. J Approximation Theory,1992, 71:18~38
  • 8[8]Heller P N, Resnikoff H L, Wells J R O. Wavelet Matrices and the Representation of Discrete Functions:A Tutorial in Theory and Applications. Cambridge, MA: Academic Press, 1992. 15~50

同被引文献110

  • 1毕宁,黄达人,戴青云,李峰.一类含参数的正交、对称四进小波构造[J].计算数学,2005,27(2):141-150. 被引量:3
  • 2王国秋,郑果.紧支撑4-进双对称正交小波基[J].世界科技研究与发展,2006,28(2):61-65. 被引量:1
  • 3粟涓,全宏跃.4带正交小波系统的参数化和代数结构[J].长沙交通学院学报,2006,22(4):78-83. 被引量:1
  • 4李春庚,栾秀珍,王百锁.自适应小波的构造及其在信号处理中的应用[J].电子学报,2007,35(1):4-7. 被引量:3
  • 5Chen Dirong, Han Bin, Riemenschneider S D. Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments. Adv Comp Math, 2000, 13(2): 131-165
  • 6Daubechies I. Orthonormal bases of compactly supported wavelet. Commun Pure Appl Math, 1988, 41(7): 909-996
  • 7Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
  • 8Bi Ning, Sun Qiyu, Huang Daren, et al. Robust image watermarking based on multiband wavelets and empirical mode decomposition. IEEE Transactions on Image Processing, 2007, 16(8): 1956-1966
  • 9Han Bin. Symmetric orthonormal scaling functions and wavelets with dilation factor 4. Adv Comp Math, 1998, 8(3) : 221-247
  • 10Goodman T N, Lee S L and Tang W S. Wavelets in wandering subspaces[J]. Trans. Amer. Math. Soc., 1993, 338(1): 639-654.

引证文献15

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部