1[1]Daubechies I. Orthonormal bases of compact supported wavelets. Comm Pure and Appl Math, 1988, 41:909~996
2[2]Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
3[3]Steffen P, Heller P, Gopinath R A, et al. Theory of regular M-band wavelet bases. IEEE Trans on Signal Processing, 1993, 41:3497~3511
4[4]Chui C, Lian J A. Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3. Appl Comput Harmon Anal, 1995, 2:68~84
5[5]Belogay E, Wang Y. Compactly supported orthogonal symmetric scaling functions. Appl Comput Harmon Anal, 1999, 7:137~150
6[6]Jawerth B, Peng Lizhong. Compactly supported orthogonal wavelets on the Heisenberg group. Research Report No. 45. 2001
7[7]Sherman D R, Shen Zuowei. Wavelets and pre-wavelets in low dimensions. J Approximation Theory,1992, 71:18~38
8[8]Heller P N, Resnikoff H L, Wells J R O. Wavelet Matrices and the Representation of Discrete Functions:A Tutorial in Theory and Applications. Cambridge, MA: Academic Press, 1992. 15~50
5Chen Dirong, Han Bin, Riemenschneider S D. Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments. Adv Comp Math, 2000, 13(2): 131-165
6Daubechies I. Orthonormal bases of compactly supported wavelet. Commun Pure Appl Math, 1988, 41(7): 909-996
7Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
8Bi Ning, Sun Qiyu, Huang Daren, et al. Robust image watermarking based on multiband wavelets and empirical mode decomposition. IEEE Transactions on Image Processing, 2007, 16(8): 1956-1966
9Han Bin. Symmetric orthonormal scaling functions and wavelets with dilation factor 4. Adv Comp Math, 1998, 8(3) : 221-247
10Goodman T N, Lee S L and Tang W S. Wavelets in wandering subspaces[J]. Trans. Amer. Math. Soc., 1993, 338(1): 639-654.