期刊文献+

四带对称双正交小波的构造 被引量:1

The Construction of 4-Band Symmetric Biorthogonal Wavelets
在线阅读 下载PDF
导出
摘要 利用求和法则设计了四带对称的双正交低通滤波器及其对应的尺度函数,并得到了满足对称性或反对称性、具有较高阶消失矩和较短支集的四带双正交小波滤波器;特别指出的是所构造的滤波器系数为有理数,而且分母是二进数,给应用带来很多方便。另外还利用Hanbin的方法估算出了所构造的尺度函数的光滑指标。 The symmetric biorthogonal low-pass filters of 4-band and the corresponding scaling functions are constructed by using the sum rules. Also, the symmetric or anti-symmetric biorthogonal wavelet filters of 4-band with high order vanishing moment and short support are obtained. Especially, the coefficients of filter constructed are all rational numbers and their denominators are all binary. Therefore, it is very convenient for these filters to be applied. At last, the smoothness index of the scaling functions constructed can be estimated by the method of Hanbin.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第6期835-838,共4页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金数学天元基金资助项目(10726064)
关键词 双正交小波 滤波器 求和法则 biorthogonal wavelets filters sum rules
  • 相关文献

参考文献6

  • 1Daubechies I. Orthonormal bases of compactly supported wavelet. Commun Pure Appl Math, 1988, 41(7): 909-996
  • 2Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
  • 3Bi Ning, Sun Qiyu, Huang Daren, et al. Robust image watermarking based on multiband wavelets and empirical mode decomposition. IEEE Transactions on Image Processing, 2007, 16(8): 1956-1966
  • 4Han Bin. Symmetric orthonormal scaling functions and wavelets with dilation factor 4. Adv Comp Math, 1998, 8(3) : 221-247
  • 5Chen Dirong, Han Bin, Riemenschneider S D. Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments. Adv Comp Math, 2000, 13(2): 131-165
  • 6彭立中,王永革.具有优美结构的紧支正交小波的构造[J].中国科学(E辑),2004,34(2):200-210. 被引量:15

二级参考文献8

  • 1[1]Daubechies I. Orthonormal bases of compact supported wavelets. Comm Pure and Appl Math, 1988, 41:909~996
  • 2[2]Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
  • 3[3]Steffen P, Heller P, Gopinath R A, et al. Theory of regular M-band wavelet bases. IEEE Trans on Signal Processing, 1993, 41:3497~3511
  • 4[4]Chui C, Lian J A. Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3. Appl Comput Harmon Anal, 1995, 2:68~84
  • 5[5]Belogay E, Wang Y. Compactly supported orthogonal symmetric scaling functions. Appl Comput Harmon Anal, 1999, 7:137~150
  • 6[6]Jawerth B, Peng Lizhong. Compactly supported orthogonal wavelets on the Heisenberg group. Research Report No. 45. 2001
  • 7[7]Sherman D R, Shen Zuowei. Wavelets and pre-wavelets in low dimensions. J Approximation Theory,1992, 71:18~38
  • 8[8]Heller P N, Resnikoff H L, Wells J R O. Wavelet Matrices and the Representation of Discrete Functions:A Tutorial in Theory and Applications. Cambridge, MA: Academic Press, 1992. 15~50

共引文献14

同被引文献22

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部