期刊文献+

利用颜色的非刚性物体跟踪方法(英文) 被引量:15

Color Features for Tracking Non-Rigid Objects
在线阅读 下载PDF
导出
摘要 提出了一个利用颜色特征实时跟踪非刚性物体的方法 .首先 ,建立了一个颜色分布模型 ,该模型对部分遮挡具鲁棒性 ,对放缩和旋转具不变性 ,且计算简单 .对非刚体物体的实时鲁棒跟踪是一个非常有挑战性的课题 ,本文提出了利用颜色特征实时跟踪非刚体物体的方法 .首先 ,建立了一个颜色分布模型 ,该模型对部分遮挡具有鲁棒性 ,对放缩具有不变性 ,而且计算简单 .然后 ,采用粒子滤波的方法将颜色分布模型集成到一个动态状态估计的概率框架中 .为了处理光照变化等引起的外貌变化 ,进一步引入自适应模型更新过程 .同时 。 Robust real-time tracking of non-rigid objects is a challenging task. Color distributions provide an efficient feature for this kind of tracking problems as they are robust to partial occlusion, are rotation and scale invariant and computationally efficient. This article presents the integration of color distributions into particle filtering, which has typically been used in combination with edge-based image features. Particle filters offer a probabilistic framework for dynamic state estimation and have proven to work well in cases of clutter and occlusion. To overcome the problem of appearance changes, an adaptive model update is introduced during temporally stable image observations. Furthermore, an initialization strategy is discussed since tracked objects may disappear and reappear.
出处 《自动化学报》 EI CSCD 北大核心 2003年第3期345-355,共11页 Acta Automatica Sinica
基金 SupportbytheEuropeanISTprojectSTAR (IST 2 0 0 0 2 8764 )andbytheGOA/VHS +projectfinancedbytheResearchFundofKatholiekeUniversiteitLeuven,Belgium
关键词 非刚性物体跟踪方法 颜色 颜色分布模型 BHATTACHARYYA系数 鲁棒性 Particle filtering color distribution Bhattacharyya coefficient
  • 相关文献

参考文献23

  • 1Beymer D, McLauchlan P. Coifman B, Malik J. A real-time computer vision system for measuring traffic parameters.Computer Vision and Pattern Recognition, 1997. 495-501.
  • 2Greiffenhagen M, Ramesh V, Comaniciu D, Niemann H. Statistical modeling and performance characterization of a real-time dual camera surveillance system. Computer Vision and Pattern Recognition ,2000. 335-342.
  • 3Segen J , Pingali S. A camera-based system for tracking people in real time. In:International Conference on Pattern Recognition, 1996. 63-67.
  • 4Gordon N, Salmond D. Bayesian state estimation for tracking and guidance using the bootstrap filter. Journal of Guidance. Control and Dynamics, 1995,18(6): 1434-1443.
  • 5Isard M, Blake A. Contour tracking by stochastic propagation of conditional density. European Conference on Computer Vision, 1996. 343-356.
  • 6Isard M, Blake A. CONDENSATION--Conditional density propagation for visual tracking. International Journal Computer Vision ,1998,1(29) :5-28.
  • 7Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 1996,5 ( 1 ) : 1 - 25.
  • 8Koller D, Weber J, Malik J. Robust multiple car tracking with occlusion reasoning. In:European Conference on Computer Vision, 1994. 189- 196.
  • 9Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. Computer Vision and Pattern Recoenition, 2000. 142-149.
  • 10Jepson A, Fleet D, El-Maraghi T. Robust online appearance models for visual tracking. Computer Vision and Pattern Recognition ,2001. 415-422.

同被引文献105

引证文献15

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部