期刊文献+

一种基于局域灰度分布的自适应运动检测算法

An Adaptive Algorithm Based on Local Grey-level Distribution for Motion Detection
在线阅读 下载PDF
导出
摘要 运动检测是基于视频的智能交通系统的基础,为了能够快速、准确的适应背景变化,本文提出了一种基于局域灰度分布的运动检测算法,利用图像块的灰度分布特征,构造相应的离散概率模型,并采用自适应的模型参数更新方法。实验证明,算法能够自适应交通场景中背景的多模态性、动态背景、光照变化以及一定程度的遮挡等情况,并且训练时间短,每帧的处理时间也能够满足实时性要求。 Motion detection is an essential step in the intelligent traffic system based on video. In order to correctly deal with variances of background quickly, this paper proposes a novel adaptive motion detection algorithm based on local grey-level distribution. It constructs the discrete probabilistic model for each image block and adaptively updates the, parameters of the model. Experiments show that this method can effectively handle the practical difficulties in traffic scenes,including muhimodal background, dynamic background, illumination changes, and partial occlusion. In addition, this algorithm requires less training samples and can satisfy real time requirement of processing time per frame.
出处 《信号处理》 CSCD 北大核心 2008年第2期209-212,共4页 Journal of Signal Processing
基金 中科院自动化所-中国科学技术大学智能科学与技术联合实验室自主研究课题基金(No.A0602)支持
关键词 智能交通系统 运动检测 灰度分布 Intelligent Transportation System Motion detection Grey-level Distribution
  • 相关文献

参考文献2

二级参考文献29

  • 1Beymer D, McLauchlan P. Coifman B, Malik J. A real-time computer vision system for measuring traffic parameters.Computer Vision and Pattern Recognition, 1997. 495-501.
  • 2Greiffenhagen M, Ramesh V, Comaniciu D, Niemann H. Statistical modeling and performance characterization of a real-time dual camera surveillance system. Computer Vision and Pattern Recognition ,2000. 335-342.
  • 3Segen J , Pingali S. A camera-based system for tracking people in real time. In:International Conference on Pattern Recognition, 1996. 63-67.
  • 4Gordon N, Salmond D. Bayesian state estimation for tracking and guidance using the bootstrap filter. Journal of Guidance. Control and Dynamics, 1995,18(6): 1434-1443.
  • 5Isard M, Blake A. Contour tracking by stochastic propagation of conditional density. European Conference on Computer Vision, 1996. 343-356.
  • 6Isard M, Blake A. CONDENSATION--Conditional density propagation for visual tracking. International Journal Computer Vision ,1998,1(29) :5-28.
  • 7Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 1996,5 ( 1 ) : 1 - 25.
  • 8Koller D, Weber J, Malik J. Robust multiple car tracking with occlusion reasoning. In:European Conference on Computer Vision, 1994. 189- 196.
  • 9Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. Computer Vision and Pattern Recoenition, 2000. 142-149.
  • 10Jepson A, Fleet D, El-Maraghi T. Robust online appearance models for visual tracking. Computer Vision and Pattern Recognition ,2001. 415-422.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部