期刊文献+

移动检测技术的研究 被引量:12

Study of Probe Vehicle Technology
在线阅读 下载PDF
导出
摘要 移动检测技术是智能交通系统中实时获取交通信息的重要手段之一.介绍了移动检测技术的概念及优缺点,对当前移动检测技术中的关键问题:如检测车辆占车流的百分比,利用移动检测技术估计和预测的交通指标以及估计、预测方法作了详细介绍,指出如何确定检测车在车流中所占百分比,利用该技术对旅行速度、旅行时间进行估计和预测,以及基于链路的估计、预测方法优于基于路段的估计、预测方法. The probe vehicle techniques discussed here are one of the typically intelligent transportation system (ITS) applications designed primarily for collecting data in real_time. In this paper,concept, advantages and disadvantages of probe vehicle techniques are introduced. Some key problems are presented particularly, such as percentage of probe vehicles, estimation and prediction indices by probe vehicle, as well as the estimation and prediction methods. In conclusion, how to determine probe vehicle sample sizes is pointed out. Travel speed and travel time are main estimation and prediction indices, and direct measuring of path_based travel time rather than link_based travel times could generate a more accurate result.
出处 《北方交通大学学报》 CSCD 北大核心 2003年第3期80-83,共4页 Journal of Northern Jiaotong University
基金 教育部优秀青年教师资助计划项目
关键词 移动检测车 智能交通系统 全球卫星定位系统 旅行时间 旅行速度 probe vehicle intelligent transportation system(ITS) global position system(GPS) travel time travel speed
  • 相关文献

参考文献8

  • 1Sodeikat H. Co-operative Transport Management with EURO-SCOUT[M]. Ian Catling: ed. Artech House, 1995.
  • 2Boyce D, Kirson A, Schofer J.Design and Implementation of ADVANCE[A]. Proc Third International Conference on Vehicle Navigation and Information Systems[C]. Ottawa:IEEE, 1993. 415-426.
  • 3Won-Seop Han, Keechoo Choi. KORTIC:An Implementation of A KoreaTraffie Information Center over Metropolitan Seoul Region[A]. The 4th ITS World Congress[CD]. Berlin: ITS Europe/ITS Japan/ITS America, 1996.
  • 4Chen M, Chien S. Determining the Number of Probe Vehicles for Freeway Travel Time Estimation Using Microscopic Simulation[J]. Transportation Research Record 1719. Washington D. C. :TRB/National Research Council, 2000.61- 68.
  • 5Chen M, Chien S I L. Dynamic Freeway Travel Time Prediction Using Probe Vehicle Data: Link-based vs Path-based[A].Transportation Research Board 80th Annual Meeting[CD]. Washington D. C. :TRB,2001.1- 2887.
  • 6Hallenbeck M, Boyle T,Ring J. Use of Automatic Vehicle Identification Techniques for Measuring Traffic Performance and Performing Incident Detection[R]. Washington D. C. :Washington State Transportation Center/University of Washington, 1992.
  • 7Angelo M,A1-Deek H,Wang M. Travel Time Prediction for Freeway Corridors[A]. Transportation Research Record 1676[C]. Washington D. C. :TRB, 1999. 184- 191.
  • 8Rilett L, Park D. Direct Forecasting of Freeway Corridor Travel Times Using Spectral Basis Neural Networks[A]. Transportation Research Record 1752[C]. Washington D. C. :TRB,2001. 140-147.

同被引文献84

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部