期刊文献+

二元正交小波的构造 被引量:2

Construction of Bivariate Orthogonal Wavelet
在线阅读 下载PDF
导出
摘要 高维小波是处理多维信息的工具 .本文给出的构造紧支撑不可分二元正交小波函数的算法 .当尺度函数的符号中所含因子 1 +z121 +z222 的幂指数r越高时 ,尺度函数越光滑 . Multivariate wavelets are powerful tool for multi-dimension signal processing.But tensor product wavelets has a number of drawbacks.In this paper,we give an algorithm of construction compact support bivariate orthogonal scaling function whose dilation matrix is 2I,the correspond wavelets are also offered.Furthermore,when one of the two pameters l 1 and l 2 is not equal to 0,the wavelets are nonseperable.Example is also given in this paper.
出处 《应用数学》 CSCD 北大核心 2003年第1期49-54,共6页 Mathematica Applicata
关键词 尺度函数 光滑 不可分 正交小波 Dilation matrix Non seperable Orthogonal wavelet
  • 相关文献

参考文献8

  • 1I. Daubechies. Orthonormal bases of compactly supported wavelets[J]. Comm. Pure Appl. Math, 1988,41:909-996.
  • 2A. Cohen, I. Daubechies. Non seperable bidimensional wavelet bases[J]. Rev. Mat. Iberoamerieana, 1993,9:51-137.
  • 3E. Blogay, Y. Wang, Arbitraily smooth orthogonal nonsepqrable wavelets in R^2 [J]. SIAM J. Math. Anal. ,1999,30(3) :678-697.
  • 4J. Kovacevic, M. A. Vetterli. Non separable two and three dimensional wavelets[J]. IEEE Trans. Signal Process. , 1995,43(5) : 1269-1272.
  • 5W. He,M. J. Lai. Examples of bivariate nonseparable compactly supported continuous wavelets[J]. IEEE Trans. Image Process. , 2000,9 (5) : 949 - 953.
  • 6L. Villemoes. Continuity of nonseparable quincunx wavelets[J]. Appl. Comput. Harmon. Anal. , 1994,1:180-187.
  • 7A. Cohen,J. P. Conze. Regularite des bases diondelettes et mesures ergdiques[J]. Rev. Mat. Iberomamericana, 1992,8 : 351 -365.
  • 8崔锦泰著 程正兴译.小波分析导论[M].北京:电子工业出版社,1995.86-99.

共引文献11

同被引文献17

  • 1陈中,赵联文.信号奇异性检测中小波分析的应用[J].重庆师范大学学报(自然科学版),2004,21(2):15-17. 被引量:12
  • 2王林翔,R.V.N.梅尔姆克.热弹性动力学耦合问题的微分代数方法[J].应用数学和力学,2006,27(9):1036-1046. 被引量:4
  • 3罗振东,毛允魁,朱江,郭兴明(推荐).定常的磁流体力学方程的非线性Galerkin混合元法[J].应用数学和力学,2006,27(12):1486-1496. 被引量:4
  • 4Blogay E,Wang Y. Aritraily smooth orthogonal nonseparable wavelets in R^2[J]. SIAM. J. Math. Anal.,1999,30(3) :678-697.
  • 5He W, Lai M J. Examples of bivariate nonseparable compactly supported continuous wavelets[J]. IEEE.Trans. Signal Process,2000,9(5):949-953.
  • 6Chen A, Daubechies I. Non separable bidimension wavelets bases[J]. Rev. Mat. Iberoameiciana, 1993,9(1) :51-137.
  • 7He W,Lai M J. Construction of bivariate compactly supported biorthogonal box spline wavelets with arbitrary high regularities[J]. Appl. Comp. Harmon. Anal. , 1999,6 (1) : 53 - 74.
  • 8Han B. Symmetric multivariate orthogonal refinable function[J]. Appl. Comp. Harmon. Anal. , 2004,17(3) :277-292.
  • 9Kovacevic J, Vetterli M A. Non separable two and three dimensional wavelets[J]. IEEE. Trans. Signal Process, 1995,43(5):1269-1272.
  • 10Villemoes L. Continuity of nonseparable quincunx wavelets[J]. Appl. Comp. Harmon. Anal. , 1994,1(2) :180-187.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部