摘要
钢化玻璃器皿因其性能优越而备受青睐,但在企业生产中,其钢化性能受工艺参数影响较大。本文以玻璃保鲜盘作为试验对象,采用正交试验法对其钢化工艺参数进行优化。试验选取钢化炉最后一区温度、网带速度、钢化区出风口风速为因素,各取3个水平,以成型率和冷热试验成品率为评价指标。方差分析结果表明,钢化温度对成型率和冷热试验成品率影响最大,其次是出风口风速,网带速度影响最小。通过生产线试验验证,确定最优工艺参数组合为网带速度375 mm/min、钢化温度655℃、出风口风速24 m/s。在此条件下,玻璃器皿成型率达95.62%,冷热试验成品率达90%,相比优化前有显著提升。
Tempered glassware is highly favored for its superior performance.However,in industrial production,its tempering performance is greatly affected by process parameters.This study takes glass food preservation plates as the test object,and optimizes the tempering process parameters using the orthogonal test method.The temperature of the final zone of the tempering furnace,the speed of the mesh belt,and the air outlet speed in the tempering zone are selected as the factors,each with three levels.The forming rate and the qualified rate from the cold and hot test served as the evaluation indexes.The results of variance analysis indicate that the tempering temperature has the greatest influence on the forming rate and the qualified rate,followed by the air outlet speed,while the mesh belt speed has the smallest influence.The optimal combination of process parameters is determined as the mesh belt speed of 375 mm/min,the tempering temperature of 655℃,and the air outlet speed of 24 m/s.Under these conditions,the forming rate of the glassware reaches 95.62%,and the qualified rate of the cold and hot tests reaches 90%,which is significantly improved compared with conditions before optimization.
作者
孙旺
张雅晶
董文彬
孟凡盛
王夕增
SUN Wang;ZHANG Yajing;DONG Wenbin;MENG Fansheng;WANG Xizeng(College of Intelligent Manufacturing,Anhui University of Science and Technology,Chuzhou 239000,China;School of Mechanical Electrical and Architectural Engineering,Huaibei Institute of Technology,Huaibei 235000,China;Anhui Fengyang Huaihe Glass Company Limited,Chuzhou 233100,China)
出处
《山东理工大学学报(自然科学版)》
2026年第3期72-78,共7页
Journal of Shandong University of Technology:Natural Science Edition
基金
安徽省高校自然科学研究项目(2023AH051880)
安徽科技学院校企合作项目(880852,881687)。
关键词
玻璃器皿
工艺参数优化
正交试验
方差分析法
glassware
tempering process optimization
orthogonal test method
variance analysis