期刊文献+

减缩积分微极六面体有限单元的开发与应用验证

Development of reduced integration micropolar hexahedron finite element and application verification
在线阅读 下载PDF
导出
摘要 微极弹性有限元法在分析具有复杂微结构的材料上有着广泛应用。针对现有实现通常采用完全积分方案而导致的计算效率低以及弯曲工况下出现剪切锁定的问题,提出一种通用高效的缩减积分一阶六面体微极有限单元,并通过海洋结构物通用分析软件SAM进行算例验证。单元算法结合标准拉格朗日插值和均匀应变与曲率公式,能够通过单元分片检验并保证畸形单元计算的准确性。同时,引入一种人工刚度方法,有效抑制缩减积分微极单元的位移和旋转沙漏失稳模式。通过数值验证,包括力和位移分片检验确认单元的收敛性,悬臂梁纯弯曲测试评估单元在剪切锁定问题上的改善效果,以及对船舶常用夹芯结构进行振动响应模态分析,验证了该单元在船舶结构有限元分析中相较于传统实体单元的有效性和优势。 The micropolar elastic finite element method has found extensive applications in analyzing materials with complex microstructures.To address the problems of low computational efficiency and shear locking under bending conditions caused by the fully integrated scheme commonly adopted in existing implementations,a universal and efficient reduced-integration first-order hexahedral micropolar finite element was proposed and verified using SAM,a general analysis software for marine structures.The element algorithm,combined with the standard Lagrange interpolation and uniform-strain and curvature formulas,passed the element patch test and ensured the calculation accuracy for distorted elements.Additionally,an artificial stiffness method was introduced to effectively suppress displacement and rotational hourglass instability modes in the reduced-integration micropolar elements.Numerical validation,including force and displacement patch tests for convergence,cantilever-beam tests for shear locking,and modal analysis of vibration responses of sandwich structures used in shipbuilding,demonstrated the proposed element’s effectiveness and advantages over traditional solid elements in finite-element analysis of ship structures.
作者 周天齐 丁军 姚宇 ZHOU Tianqi;DING Jun;YAO Yu(China Ship Scientific Research Center,Wuxi Jiangsu 214000,China;Taihu Laboratory of Deepsea Technological Science,Wuxi Jiangsu 214000,China)
出处 《图学学报》 北大核心 2025年第6期1153-1160,共8页 Journal of Graphics
基金 国家重点研发计划项目(2022YFB3306200)。
关键词 微极弹性理论 有限单元开发 减缩积分法 沙漏稳定技术 数值验证 micropolar elasticity theory development of finite element reduced integration hourglass instabilities numerical validations
  • 相关文献

参考文献5

二级参考文献41

  • 1徐岗,李新,黄章进,吴梦,蔺宏伟.面向等几何分析的几何计算[J].计算机辅助设计与图形学学报,2015,27(4):570-581. 被引量:14
  • 2SZE K Y, CHAN W K, PIAN T H H. An eightnode hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells[J]. International Journal for Numerical Methods in Engineering, 2002,55:853-878.
  • 3XU X, CAI R F. A new plate shell element of 16 nodes 40 degrees of freedom by relative displacement method[J]. Communications in Numerical Methods in Engineering, 1993,9 : 15-20.
  • 4TAYLOR R L, BERSESFORD P J, WILSON E L. A non-conforming element for stress analysis[J]. International Journal for Numerical Methods in Engineering, 1976,10 :1211-1219.
  • 5WILSON E L, IBRAHIMBEGOVIC A. Use of incompatible displacement modes for the calculation of element stiffnesses or stresses[J]. Finite Elements in Analysis and Design, 1990,7 : 229-241.
  • 6CHOI C K, LEE T Y, CHUNG K Y. Direct modification for non-conforming elements with drilling DOF [J]. International Journal for Numerical Methods in Engineering, 2002,55 : 1463-1476.
  • 7WU C C, HUANG Y Q, RAMM E. A further study on incompatible models: revise-stiffness approach and completeness of trial functions[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190 : 5923-5934.
  • 8WU C C, HUANG M G, PlAN T H H. Consistency condition and convergence criteria of incompatible elements: general formulation of incompatible functions and its application [J]. Computers & Structures, 1987,27 : 639-644.
  • 9KIMKD, LIUGZ, HANSC. Aresultant 8-node solid-shell element for geometrically nonlinear analysis[J]. Computational Mechanics ,2005,35:315-331.
  • 10WILSON E L, TAYLOR R L, DOHERTY W P, et al. Incompatible Displacement Models [A]. In: Fenves SJ. Numerical and Computer Methods in Structural Mechanics [M]. New York: Academic Press Inc,1973.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部