期刊文献+

全钒液流电池建模研究现状及展望

Current status of vanadium redox flow battery modeling and research advances in data-driven approaches
在线阅读 下载PDF
导出
摘要 面对可再生能源间歇性和波动性带来的挑战,电网要求储能电池具有更大容量、更高功率。全钒液流电池(vanadium redox flow battery,VRFB)作为大容量储能装置对于大规模储能的工程应用具有重要意义,其中全钒液流电池建模研究是推动电池发展应用的关键技术支撑。本文通过对近期相关文献的探讨,介绍了VRFB的工作机理,归纳总结了VRFB的等效电路模型并对其进行了对比分析,着重介绍了VRFB零维、一维、二维及三维机理模型和数据驱动模型。对于数据驱动模型,重点分析了数据驱动建模方法和数据驱动模型不确定性量化方法,介绍了新颖的机理-数据驱动模型。基于综合分析,提出了机理-数据驱动融合模型这一发展方向及其技术路线,并给出了基于PCDNN模型的实验验证。最后探讨了VRFB机理和数据驱动模型的局限性,展望了VRFB模型发展趋势。本研究为VRFB建模技术在新能源储能系统中的应用提供重要的理论参考。 Facing the challenges of intermittent and fluctuating renewable energy,power grids require energy storage systems with higher capacities and power outputs.As a large-scale energy storage technology,the vanadium redox flow battery(VRFB)plays a vital role in grid-scale applications.The modeling of VRFBs serves as a key technical foundation for their development and deployment.This paper reviews recent studies on VRFBs by introducing their working principles and conducting a comparative analysis to summarize various equivalent circuit models.Furthermore,it emphasizes zero-dimensional to three-dimensional mechanistic models and data-driven approaches.For data-driven modeling,it focuses on modeling methodologies and uncertainty quantification techniques,and further introduces hybrid mechanism-data-driven models.A development path for hybrid models is proposed based on a comprehensive analysis,and a PCDNN-based model is experimentally validated.The paper concludes with a discussion of current limitations of mechanistic and data-driven models and outlines future directions for VRFB model development.This study provides valuable theoretical support for the application of VRFB modeling in renewable energy storage systems.
作者 李建林 梅岩竹 王茜 姜晓霞 李笑竹 LI Jianlin;MEI Yanzhu;WANG Qian;JIANG Xiaoxia;LI Xiaozhu(National User-Side Energy Storage Innovation Research and Development Center(North China University of Technology),Beijing 100144,China;State Power Investment Corporation Research Institute Co.,Ltd.,Beijing 102200,China;Dpartment of Electrical Engineering,Xinjiang University,Urumqi 830046,Xinjiang,China)
出处 《储能科学与技术》 北大核心 2025年第12期4618-4631,共14页 Energy Storage Science and Technology
基金 北京市自然科学基金资助项目(L242008)。
关键词 全钒液流电池 建模 机理模型 数据驱动 混合模型 vanadium redox flow battery(VRFB) battery modeling mechanistic model data driven hybrid modeling
  • 相关文献

参考文献5

二级参考文献27

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部