期刊文献+

Optimization of Robotic Arm Grasping Strategy Based on Deep Reinforcement Learning

在线阅读 下载PDF
导出
摘要 In recent years,robotic arm grasping has become a pivotal task in the field of robotics,with applications spanning from industrial automation to healthcare.The optimization of grasping strategies plays a crucial role in enhancing the effectiveness,efficiency,and reliability of robotic systems.This paper presents a novel approach to optimizing robotic arm grasping strategies based on deep reinforcement learning(DRL).Through the utilization of advanced DRL algorithms,such as Q-Learning,Deep Q-Networks(DQN),Policy Gradient Methods,and Proximal Policy Optimization(PPO),the study aims to improve the performance of robotic arms in grasping objects with varying shapes,sizes,and environmental conditions.The paper provides a detailed analysis of the various deep reinforcement learning methods used for grasping strategy optimization,emphasizing the strengths and weaknesses of each algorithm.It also presents a comprehensive framework for training the DRL models,including simulation environment setup,the optimization process,and the evaluation metrics for grasping success.The results demonstrate that the proposed approach significantly enhances the accuracy and stability of the robotic arm in performing grasping tasks.The study further explores the challenges in training deep reinforcement learning models for real-time robotic applications and offers solutions for improving the efficiency and reliability of grasping strategies.
作者 Dongjun He
机构地区 Xihua University
出处 《计算机科学与技术汇刊(中英文版)》 2025年第2期1-7,共7页 Transactions on Computer Science and Technology
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部