摘要
The integration of satellite communication network and cellular network has a great potential to enable ubiquitous connectivity in future communication networks.Among numerous related application scenarios,the direct connection of mobile phone to satellite has attracted increasing attention.However,the spectrum scarcity in the sub-6 GHz band and low spectrum utilization prevents its popularity.To address these problem,in this paper,we propose a dynamic spectrum sharing method for satellite network and cellular network based on beam-hopping.Specifically,we first develop a centralized dynamic spectrum sharing architecture based on beam-hopping,and propose a delay pre-compensation scheme for beam hopping pattern.Then,an optimization problem is formulated to maximize the overall capacity of the integrated network,with considering the service requirements,the fairness between beam positions and mixed co-channel interference,etc.To solve this problem,a polling-based dynamic resource allocation algorithm is proposed.Simulation results confirm that the proposed algorithm can effectively reduce the serious cochannel interference between different beams or different systems,and improve the spectrum utilization rate as well as system capacity.
基金
supported in part by the National Key Research and Development Program of China under Grant 2018YFA0701601
in part by the National Natural Science Foundation of China under Grant 61922049 and Grant 61941104
in part by the Tsinghua University-China Mobile Communications Group Company Ltd.,Joint Institute.