期刊文献+

基于多尺度健康因子-BEAST分解和SARIMA模型结合的锂离子电池剩余使用寿命预测

Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Combination of Multiscale Health Indicators-BEAST Decomposition and SARIMA Modeling
在线阅读 下载PDF
导出
摘要 锂离子电池的剩余使用寿命(RUL)预测对电池管理和安全性至关重要.现有的RUL预测方法多依赖大量历史数据,且在复杂工况下精度较低,计算负担重.为解决这些问题,本文结合健康因子(HI)、贝叶斯时序分解估计器(BEAST)和季节性差分自回归移动平均模型(SARIMA),提出了一种新颖的RUL预测方法.与传统方法不同,本文创新性地采用HI替代最大可放电容量,能够更精确地反映电池衰退过程;同时,结合贝叶斯时序分解估计器对HI进行分解与重构,提高了预测精度,减少了对大量历史数据的依赖;最后,利用季节性差分自回归移动平均模型对电池衰退的时序数据进行建模,显著提高了预测精度和计算效率.实验结果表明,以动态工况电池(CS#7)为例,所提方法在电池衰减5%时,最大相对误差小于2%,衰减10%时小于4.31%;相比LSTM和LSSVM方法,本文方法在MAE上分别降低了16.6%和25.9%,计算效率分别提高了55.2%和22.8%. Predicting the remaining useful life(RUL)of lithium-ion batteries is critical for battery management and safety.Existing RUL prediction methods mostly rely on a large amount of historical data and are less accurate and computationally burdensome under complex operating conditions.To address these issues,this paper proposes a novel RUL prediction method by combining the health indicators(HI),the Bayesian estimator of abrupt change,seasonality,and trend(BEAST),and the seasonal autoregressive integrated moving average(SARIMA)model.Different from the traditional method,this paper innovatively adopts HI to replace the maximum dischargeable capacity,which can reflect the battery decline process more accurately.Meanwhile,the decomposition and reconstruction of HI in combination with BEAST improves the prediction accuracy and reduces the dependence on a large amount of historical data.Finally,the SARIMA model for the time-series data of battery decline considerably improves the prediction accuracy and computational efficiency.The experimental results indicate that for batteries under dynamic operating conditions(CS#7),the proposed method maintains maximum relative errors below 2%at 5%capacity degradation and 4.31%at 10%degradation.Compared with the long short-term memory and least square support vector machine methods,the method in this paper reduces the mean absolute error by 16.6%and 25.9%and improves the computational efficiency by 55.2%and 22.8%,respectively.
作者 姚芳 韩永康 李谦 汤雨 张正宣 Yao Fang;Han Yongkang;Li Qian;Tang Yu;Zhang Zhengxuan(College of Electrical Engineering,Hebei University of Technology,Tianjin 300401,China;Electric Power Research Institute,State Grid Tianjin Electric Power Company,Tianjin 300392,China)
出处 《天津大学学报(自然科学与工程技术版)》 北大核心 2026年第1期77-89,共13页 Journal of Tianjin University:Science and Technology
基金 河北省自然科学基金资助项目(E2022202056).
关键词 锂离子电池 剩余使用寿命 健康因子 BEAST分解 SARIMA模型 lithium-ion batteries remaining useful life health indicator(HI) BEAST decomposition seasonal autoregressive integrated moving average(SARIMA)model
  • 相关文献

参考文献9

二级参考文献76

共引文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部