期刊文献+

改进的雪消融算法在六轴机械臂轨迹优化中的仿真研究

Simulation Study on Improved Snow Melting Algorithm in Trajectory Optimization of Six Axis Robotic Arm
在线阅读 下载PDF
导出
摘要 为了使机械臂的运动轨迹更加平滑、连续,工作更加高效、节能,文中对雪消融算法进行了改进,并对其在机械臂轨迹规划中的应用进行了仿真研究。首先,采用D-H参数法建立坐标系,推导运动学方程,进行正、逆运动学分析,建立机械臂模型;其次,采用3-5-3次多项式插值法进行关节空间的轨迹规划;然后,重点对雪消融算法进行改进,融合Cat映射和反向学习,引入双种群协同演化机制,采用高斯莱维动态变异;最后,基于改进的雪消融算法进行轨迹优化,得到机械臂位置、速度、加速度曲线。实验结果表明:改进的雪消融算法在六轴机械臂轨迹优化中取得了良好的效果,优化后的运动轨迹更加平滑连续,无突变,运动时间得到了明显缩短。 In order to make the motion trajectory of the robotic arm smoother,more continuous,more efficient,and energysaving,this paper improved the snow melting algorithm and conducted simulation research on its application in robotic arm trajectory planning.Firstly,the D-H parameter method was used to establish a coordinate system,derive kinematic equations,conduct forward and inverse kinematic analysis,and establish a robotic arm model.Secondly,the trajectory planning of joint space was carried out using the 3-5-3 degree polynomial interpolation method.Then,the focus is on improving the snow melting algorithm by integrating Cat mapping and reverse learning,introducing a dual population coevolution mechanism,and adopting Gaussian Levy dynamic mutation.Finally,based on the improved snow melting algorithm,trajectory optimization was performed to obtain the position,velocity,and acceleration curves of the robotic arm.The experimental results show that the improved snow melting algorithm achieves good results in the trajectory optimization of the six axis robotic arm.The optimized motion trajectory is smoother and more continuous,without sudden changes,and the motion time is significantly shortened.
作者 张凯 黄海龙 王帅 杨文杰 崔善坤 ZHANG Kai;HUANG Hailong;WANG Shuai;YANG Wenjie;CUI Shankun(College of Mechanical Engineering and Automation,Liaoning University of Technology)
出处 《仪表技术与传感器》 北大核心 2025年第7期107-113,共7页 Instrument Technique and Sensor
基金 2023年辽宁省教育厅基本科研项目(JYTMS20230831)。
关键词 机械臂 雪消融算法 轨迹规划 运动学分析 3-5-3次多项式插值 robotic arm snow melting algorithm trajectory planning kinematic analysis 3-5-3 polynomial interpolation
  • 相关文献

参考文献11

二级参考文献79

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部