期刊文献+

Large Deviations for a Critical Galton-Watson Branching Process

原文传递
导出
摘要 In this paper,a critical Galton-Watson branching process {Z_(n)} is considered.Large deviation rates of SZ_(n):=Σ_(i=1)^_(Z_(n)) Xi are obtained,where {X_(i);i≥1} is a sequence of independent and identically distributed random variables and X_(1) is in the domain of attraction of an-stable law with α∈(0,2).One shall see that the convergence rate is determined by the tail index of X_(1) and the variance of Z_(1).Our results can be compared with those ones of the supercritical case.
出处 《Acta Mathematicae Applicatae Sinica》 2025年第2期456-478,共23页 应用数学学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.12101023,No.11871103 and 12271043) the National Key Research and Development Program of China(No.2020YFA0712900) Fundamental Research Funds for the Central Universities(No.2023MS077).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部