期刊文献+

一类具非线性梯度项的p-拉普拉斯方程严格凸的整体径向大解的存在性

Existence of Strictly Convex Entire Radial Large Solutions for a Class of p-Laplace Equation with Nonlinear Gradient Terms
在线阅读 下载PDF
导出
摘要 考虑含非线性梯度项的加权p-拉普拉斯方程Δ_(p)u=b(|x|)f(u)|u|^(q),x∈ℝ^(N),且f满足Keller-Osserman型条件。给出权函数b的一个新的一般性假设,并建立了问题存在单调递增的严格凸正整体径向大解的充分必要条件。 We consider the p-Laplace equations with weighted nonlinear gradient termsΔ_(p)u=b(|x|)f(u)|u|^(q),x∈ℝ^(N),under the Keller-Osserman type condition on f.A new general assumption on the weight functions,b,is provided,and a necessary and sufficient condition for the existence of increasing strictly convex entire positive radial large solutions to this problem is established.
作者 黄丽霞 马云杰 张志军 HUANG Lixia;MA Yunjie;ZHANG Zhijun(School of Mathematics and Information Sciences,Yantai University,Yantai 264005,China)
出处 《烟台大学学报(自然科学与工程版)》 2025年第1期1-7,共7页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 山东省自然科学基金资助项目(ZR2022MA020)。
关键词 P-拉普拉斯方程 Keller-Osserman型条件 严格凸正整体径向大解 存在性 充分必要条件 p-Laplace equation the Keller-Osserman type condition entire positive strictly convex radial large solutions existence necessary and sufficient condition
  • 相关文献

参考文献3

二级参考文献17

  • 1Kaplan S., On the growth of solutions of quasilinear parabolic equations. Comm. Pure Appl. Math., 1963, 16: 305-333.
  • 2Lee T Y, Ni W M. Global existence, large time behavior and life span of solutions ofsemilinear parabolic Cauchy problem. Trans. Amer. Math. Soc., 1992, 333: 365-371.
  • 3Wang X F, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math.Soc.. 1993, 337(2): 549-590.
  • 4Li Y. Asymptotic behavior of positive solutions of equation △u + K(x)up = 0 in R^n. J.Dill. Eqns., 1992, 95: 304-330.
  • 5Atkinson F V, Brezis H, Peletier L A. Nodal solutions of elliptic equations with critical sobolev exponents. 1990, J. Dill. Eqns., 85: 151-170.
  • 6Ni W M. On the elliptic equation △u + K(x)u^n+2/n-2= 0, its generalizations and applcations in geometry. Indiana Univ. Math. J., 1982, 31: 493-529.
  • 7Chou K S, Guo Z M, Wei J C. Symmetry of positire solutions of a semilinear elliptic equation with singular nonlinearity. Preprint.
  • 8Bertozzi A L, Pugh M C. Long-wave instabilities and saturation in thin film equations.Comm. Pure Appl. Math., 1998, 51(6): 625-661.
  • 9Bertozzi A L, Pugh M C. Finite-time blow-up of solutions of some long-wave unstable thin film equations. Indiana Univ, Math. J., 2000, 49(4): 1323-1366.
  • 10Chou K S, Guo Z M, Wei J. On the Cauchy problem for a reaction-diffusion equation with a singular nonlinearity. Preprint.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部