期刊文献+

Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials

原文传递
导出
摘要 Efficiently creating a concise but comprehensive data set for training machine-learned interatomic potentials(MLIPs)is an under-explored problem.Active learning,which uses biased or unbiased molecular dynamics(MD)to generate candidate pools,aims to address this objective.Existing biased and unbiased MD-simulation methods,however,are prone to miss either rare events or extrapolative regions—areas of the configurational space where unreliable predictions are made.This work demonstrates that MD,when biased by the MLIP’s energy uncertainty,simultaneously captures extrapolative regions and rare events,which is crucial for developing uniformly accurate MLIPs.Furthermore,exploiting automatic differentiation,we enhance bias-forces-driven MD with the concept of bias stress.
出处 《npj Computational Materials》 CSCD 2024年第1期2379-2396,共18页 计算材料学(英文)
基金 Funded by Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy-EXC 2075-390740016。
关键词 UNIFORMLY dynamics RARE
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部