期刊文献+

Localization and segmentation of atomic columns in supported nanoparticles for fast scanning transmission electron microscopy

原文传递
导出
摘要 To accurately capture the dynamic behavior of small nanoparticles in scanning transmission electron microscopy,high-quality data and advanced data processing is needed.The fast scan rate required to observe structural dynamics inherently leads to very noisy data where machine learning tools are essential for unbiased analysis.In this study,we develop a workflow based on two U-Net architectures to automatically localize and classify atomic columns at particle-support interfaces.The model is trained on non-physical image simulations,achieves sub-pixel localization precision,high classification accuracy,and generalizes well to experimental data.We test our model on both in situ and ex situ experimental time series recorded at 5 frames per second of small Pt nanoparticles supported onCeO2(111).The processedmovies show sub-second dynamics of the nanoparticles and reveal site-specific movement patterns of individual atomic columns.
出处 《npj Computational Materials》 CSCD 2024年第1期1508-1515,共8页 计算材料学(英文)
基金 The authors acknowledge funding from the Swiss National Science Foundation(200021_196381).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部