期刊文献+

煤矿智能压风系统的应用研究 被引量:4

Application of intelligent air compressing system in coal mine
在线阅读 下载PDF
导出
摘要 针对传统压风系统多电机之间无法协同配合,压风机房需要定时巡检等问题,设计了一种智能压风系统。该系统通过在控制侧加入可编程控制柜,并引入模糊控制算法,实现压风系统的按压供风、负载均衡、自动轮换的功能。通过布置故障诊断装置,检测压风机的健康状况,在发生故障时可停止压风机的运行,并及时开启另一台压风机,保障管道压力恒定。通过安装视频分析摄像仪实现对压风机房进入人员的监测,分析是否有违规或越界行为,保证人员和设备的安全。智能压风系统的管控平台展示压风机的各项数据,并通过动画生动的展示压风机房内各设备的运行状态,显示压风机健康状况的分析结果。该系统的应用减少了电能的浪费,提供了准确的诊断结果,提高了煤矿智能化水平。 Aiming at the problems that multiple motors in the traditional air compressing system cannot cooperate and the air compressor room needs regular inspection,an intelligent air compressing system is designed.By adding programmable control cabinet to the control side and introducing fuzzy control algorithm,the functions of compressed air supply,load balancing and automatic rotation of the system are realized.By arranging a fault diagnosis device to detect the health condition of the air compressor,the operation can be stopped when the fault occurs,and another air compressor can be started in time to ensure the constant pressure of the pipeline.The video analysis camera is installed to monitor the personnel entering the air compressor room and analyze whether there are violations or transgressions to ensure the safety of personnel and equipment.In the management and control platform of the intelligent air compressing system,various data and the health status of the air compressor is accessible,and operating status of the equipment in the air compressor room is vividly displayed through animation.Application of this system reduces the waste of electric energy,provides accurate diagnosis results,and improves the level of coal mine intelligentization.
作者 谷树伟 马孝威 GU Shuwei;MA Xiaowei(Lijiahao Coal Mine,CHN Energy Baotou Energy Co.,Lid.,Ordos 017010,China;China Coal Research Institute Co.,Ltd.,Beijing 100013,China;Engineering Research Center of Coal Mines Emergency Technology Equipment Engineering,Beijing 100013,China;Beijing Coal Mine Safety Engineering Technology Research Center,Beijing 100013,China)
出处 《煤炭工程》 北大核心 2024年第3期91-95,共5页 Coal Engineering
关键词 压风系统 模糊控制 故障诊断 视频分析 管控平台 air compressing system fuzzy control fault diagnosis video analysis control plaform
  • 相关文献

参考文献20

二级参考文献177

  • 1庞建东.压风机在线监控系统的应用[J].内蒙古石油化工,2020(8):36-38. 被引量:1
  • 2Sun Jiping,Li Chenxin.In-pit coal mine personnel uniqueness detection technology based on personnel positioning and face recognition[J].International Journal of Mining Science and Technology,2013,23(3):357-361. 被引量:11
  • 3亢生彩.网格搜索法SVM参数优化在主扇风机故障诊断中的应用[J].煤炭技术,2015,34(1):295-297. 被引量:10
  • 4ARULAMPALAM M S,MASKELL S,GORDON N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 5GORDON N J,SALMOND D J,SMITH A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].Radar and Signal Processing,1993,140(2):107-113.
  • 6ROSS D A,LI M J,LIN R S,et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision,2008,77(1/3):125-141.
  • 7ZHANG K H,ZHANG L,LIU Q S,et al.Fast tracking via dense spatio-temporal context learning[C]//European Conference on Computer Vision.Zurich:Springer International Publishing,2014:127-141.
  • 8ZHANG T Z,GHANEM B,LIU S,et al.Robust visual tracking via structured multi-task sparse learning[J].International Journal of Computer Vision,2013,101(2):367-383.
  • 9ZHANG K H,ZHANG L,YANG M H.Real-time compressive tracking[C]//European Conference on Computer Vision.Florence:Springer Verlag,2012:864-877.
  • 10WU Y X,JIA N,SUN J P.Real-time multi-scale tracking based on compressive sensing[J].The Visual Computer,2015,31(4):471-484.

共引文献637

同被引文献20

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部