期刊文献+

Tool Wear State Recognition with Deep Transfer Learning Based on Spindle Vibration for Milling Process 被引量:1

在线阅读 下载PDF
导出
摘要 The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2825-2844,共20页 工程与科学中的计算机建模(英文)
基金 the National Key Research and Development Program of China(No.2020YFB1713500) the Natural Science Basic Research Program of Shaanxi(Grant No.2023JCYB289) the National Natural Science Foundation of China(Grant No.52175112) the Fundamental Research Funds for the Central Universities(Grant No.ZYTS23102).
  • 相关文献

参考文献1

二级参考文献4

共引文献5

同被引文献22

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部