期刊文献+

A learnable self-supervised task for unsupervised domain adaptation on point cloud classification and segmentation 被引量:1

原文传递
导出
摘要 1 Introduction Deep neural networks have exhibited excellent performance in supervised tasks on point clouds,such as classification,segmentation[1]and registration[2].In supervised learning schemes,manual labeling of massive point clouds is needed for model training.However,point clouds captured from different scenarios exist inevitable distribution discrepancy,and model trained from one domain always generalize badly in another domain.To reduce the doamin distribution discrepancy,many studies[3–6]have emerged for point cloud unsupervised domain adaptation(UDA)by learning domain-invariant features,where[5]proposed using adaptive nodes to align the local features between the source and the target domains[3,4],and[6]proposed utilizing self-supervised tasks to help capture highly transferable feature representations.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第6期147-149,共3页 中国计算机科学前沿(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.62076070).
关键词 POINT CLOUD utilizing
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部