期刊文献+

基于机器视觉的齿轮中心定位算法 被引量:1

Gear center positioning algorithm based on machine vision
在线阅读 下载PDF
导出
摘要 齿轮加工精度影响因素复杂,精度测量要求高,齿轮中心(基圆圆心)的定位精度在检测过程中至关重要。为降低工业视觉检测中缺陷与噪声对齿轮中心定位精度的影响,文章提出一种齿顶圆弧分割结合改进随机抽样一致性(random sample consensus,RANSAC)算法定位齿轮中心。对采集的齿轮图像采用Canny算子检测边缘,使用Freeman码进行边缘跟踪;以最小二乘法拟合得到圆心粗基准,通过比较轮廓点到粗基准的距离快速分割出齿顶圆弧;采用亚像素边缘与更精确的阈值对圆弧进行精分割,并结合随机抽样一致性算法对圆弧进行拟合,得到齿轮中心。实验结果表明该算法具有较高的定位精度和较强的实用性。 The gear machining accuracy is affected by complex factors,which necessitates higher requirements for the accuracy measurement.The positioning accuracy of gear center(base circle center)is very important in the detection process.In order to reduce the impact of defects and noise on the positioning accuracy of gear center in industrial visual detection,this paper presents a method of tooth tip arc segmentation combined with improved random sample consensus(RANSAC)algorithm to locate the gear center.Canny operator is used to detect the edge of the collected gear image,Freeman code is used to track the edge,and the rough datum of the center of the circle is fitted by the least squares method.The tooth top arc is quickly segmented by comparing the distance between the contour point and the rough datum.The sub-pixel edge and more accurate threshold are used to accurately segment the arc,and the arc is fitted in combination with the RANSAC algorithm,so as to get the gear center.Experimental results show that the presented algorithm is accurate and applicable.
作者 任永强 李掌珠 李润 REN Yongqiang;LI Zhangzhu;LI Run(School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第4期433-437,446,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家产业技术基础公共服务平台资助项目(2019-00899-2-1)。
关键词 边缘跟踪 圆弧分割 亚像素边缘 随机抽样一致性(RANSAC) 中心定位 edge tracking arc segmentation sub-pixel edge random sample consensus(RANSAC) center positioning
  • 相关文献

参考文献9

二级参考文献160

  • 1吴冰,山海涛,郭建星.基于边缘灰度的二值化阈值确定方法[J].武汉大学学报(工学版),2003,36(z1):165-169. 被引量:7
  • 2张少军,苟中魁,李庆利,李忠富,金剑.利用数字图像处理技术测量直齿圆柱齿轮几何尺寸[J].光学精密工程,2004,12(6):619-625. 被引量:50
  • 3LIU Guang-hui,CHEN Chuan-bo.A new algorithm for computing the convex hull of a planar point set[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(8):1210-1217. 被引量:11
  • 4杨淑莹,任翠池,张成,何丕廉.基于机器视觉的齿轮产品外观缺陷检测[J].天津大学学报,2007,40(9):1111-1114. 被引量:21
  • 5Koschan A,Abidi M.Detection and classification of edges in color images[J].Signal Processing Magazine,2005,22(1):64-73.
  • 6Mittal A,Sofat S,Hancock E.Detection of edges in color images:a review and evaluative comparison of state-of-the-art techniques[M]//Autonomous and Intelligent Systems.Berlin:Springer,2012:250-259.
  • 7Panetta K,Qazi S,Agaian S.Techniques for detection and classification of edges in color images[C]//Proc of SPIE Defense and Security Symposium:International Society for Optics and Photonics.2008:69820W-1-11.
  • 8Dubois E.The structure and properties of color spaces and the representation of color images[C]//Synthesis Lectures on Image,Video,and Multimedia Processing.[S.l.]:Morgan & Claypool,2009.
  • 9Mallat S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
  • 10Benediktsson J A,Pesaresi M,Amason K.Classification and feature extraction for remote sensing images from urban areas based on morphological transformations[J].IEEE Trans on Geoscience and Remote Sensing,2003,41(9):1940-1949.

共引文献124

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部