期刊文献+

基于改进灰狼优化算法的机器人路径规划 被引量:1

Robot Path Planning Based on Improved Gray Wolf Optimization Algorithm
在线阅读 下载PDF
导出
摘要 灰狼算法(Grey Wolf Optimizer,GWO)用于路径规划会出现收敛速度慢和陷入局部最优的问题,因此本文提出了一种改进GWO。该算法在栅格环境下采用32邻域48方向的搜索方式,利用混沌法初始化灰狼种群,在与差分进化算法相融合,提高算法的搜索范围和全局搜索最优解的效果,避免算法陷入局部最优。仿真结果表明,本文算法与GWO相比,收敛速度和规划出的路径长度都有明显的提升。 The gray wolf algorithm is used for path planning,which has the problems of slow convergence and falling into local optimum.The algorithm adopts a 32-neighborhood 48-direction search method in a raster environment,uses chaos method to initialize the grey wolf population,and integrates with the differential evolution algorithm to improve the search range of the algorithm and the effect of global search for optimal solutions to avoid the algorithm falling into a local optimum.The simulation results show that the convergence speed and the length of the planned path are significantly improved compared with the Grey Wolf Optimizer(GWO)algorithm in this paper.
作者 李素 黄友锐 LI Su;HUANG Yourui(College of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《信息与电脑》 2022年第15期67-70,共4页 Information & Computer
关键词 路径规划 灰狼优化算法 栅格图 混沌初始化 差分进化 path planning gray wolf optimization algorithm grid diagram chaos initialization differential evolution
  • 相关文献

参考文献10

二级参考文献110

  • 1江善和,王其申,江巨浪.一种新型Skew Tent映射的混沌混合优化算法[J].控制理论与应用,2007,24(2):269-273. 被引量:17
  • 2Storn R, Price K. Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces[EB/OL].[2012-05-01]. bttp:llwwwl. icsi. berkeley. edu/ - stornlTR-95-012. pdf.
  • 3Storn R, Price K. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces.Journal of Global Optimization, 1997, 11 (4) : 341-359.
  • 4Storn R, Price K. Home Page of Differential Evolution[EB/OL] .[2012 - 05 - 01J. http://www.icsi.berkeley . edu/ - stornl code. html.
  • 5HonkkonenJ, Kukkonen S, Price K. Real-Parameter Optimization with Differential Evolution II Proc of the IEEE Congress on Evolu?tionary Computation. Edinburgh, UK, 2005: 506-513.
  • 6SunJianyong , Zhang Qingfu , Tsang E P K. DE/EDA: A New Evo?lutionary Algorithm for Global Optimization. Information Sciences, 2005,169(3/4): 249-262.
  • 7Kaelo P, Ali M M. A Numerical Study of Some Modified Differential Evolution Algorithms. EuropeanJournal of Operations Research, 2006,169(3): 1176-1184.
  • 8Ali M M. Differential Evolution with Preferential Crossover. Euro?peanJournal of Operations Research, 2007, 181 (3) : 1137-1147.
  • 9BrestJ, Greiner 5, Boskovic B, et al. Self-Adapting Control Para?meters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Trans on Evolutionary Computation, 2006,10(6): 646-657 ?.
  • 10Rabnamayan S, Tizhoosh H R, Salama M M A. Opposition-Based Differential Evolution. IEEE Trans on Evolutionary Computation, 2008, 12(1): 64-79.

共引文献528

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部