期刊文献+

期望红利现值近似计算的随机算子方法和扩散方法 被引量:2

Stochastic operator method and diffusion method for approximate calculation of the expected present value of dividends
在线阅读 下载PDF
导出
摘要 基于复合泊松风险模型,在红利边界策略下,讨论期望红利现值的近似计算问题.该文提出两种随机算子近似计算方法,并与扩散近似方法作数值计算对比.可发现,在索赔频率较小或样本量足够大的条件下,用随机算子方法求得的值函数和最优边界比扩散近似方法更加精确. Based on the compound Poisson risk model,this paper discusses the approximate calculation of the expected dividend present value under a dividend barrier strategy.We propose two approximate calculation methods using random operators,and compare them with the diffusion approximation method.The results show that when the claim frequency is lower and the sample size is large enough,the value functions and the optimal barriers obtained by the random operator methods are more accurate than those obtained by the diffusion approximation method.
作者 徐港 王晨 谭激扬 XU Gang;WANG Chen;TAN Jiyang(School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,China)
出处 《湘潭大学学报(自然科学版)》 CAS 2022年第5期1-9,共9页 Journal of Xiangtan University(Natural Science Edition)
基金 湖南省教育厅重点项目(20A485) 湖南省自然科学基金(2019JJ40278)。
关键词 复合泊松分布 随机算子 扩散近似 compound Poisson stochastic operator method diffusion approximation
  • 相关文献

参考文献4

二级参考文献19

  • 1佩特罗兴B B.独立随机变量之和的极限定量[M].合肥:中国科学技术出版社,1991.227-243.
  • 2王晓军 江星 刘文卿.《保险精算学》[M].中国人民大学出版社,1997年版..
  • 3DICKSON D C M.Some comments on the compound binomial model[J].ASTIN Bulletin 1994,24(1):33-45.
  • 4GERBER H U.Mathematical fun with the compound binomial process[J].ASTIN Bulletin 1988,18(2):161-168.
  • 5ERWIN Kreyszig.Introductory functional analysis with applications[M].New York:JOHN WILEY & SONS,1978.
  • 6SHIU E S W.The probability of eventual ruin in the compound binomial model[J].ASTIN Bulletin 1989,19(2):179-190.
  • 7WILLMOT G E.Ruin probabilities in the compound binomial model[J].Insurance:Mathematics and Economics 1993,12:133-142.
  • 8汉斯 U.盖伯(Gerber,H.U.).数学风险论导引[M].成世学,严颖译.北京:世界图书出版公司,1997.
  • 9BAO Zhen-hua,A note on the compound binomial model with randomized dividend strategy[J].Applied Mathematics and Computation 2007,194(1):276-286.
  • 10DEVYLDER F E.Advanced risk theory:A Self-contained introduction[M].Brussels:Editions de l'Universite de Bruxelles Brussels,1996.

共引文献26

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部