期刊文献+

面向决策行为预测的多层策略网络随机游走模型

Multiplex strategy network random walk model for decision behavior prediction
在线阅读 下载PDF
导出
摘要 为了研究多阶段决策过程中人类决策行为的规律,提出了基于策略网络的决策行为建模与预测方法。通过单层策略网络的随机游走过程对多阶段决策过程进行建模;构建多层策略网络模型,利用网络层间游走和层内游走描述决策结果对决策行为的影响;在策略网络模型的基础上提出基于频率近似概率的单步策略预测算法,生成下一阶段的决策策略;通过多阶段决策仿真案例和典型博弈案例验证了方法的准确性和实用性。实验结果表明:提出的多层策略网络预测算法能够有效捕捉人的决策行为特征,在策略有明显规律性的情形下能达到70%的预测准确率。 In order to study the regularity of human decision behavior in multi-stage decision making process,a method to model and predict decision behavior based on strategy network is proposed in the paper.Firstly,the multi-stage decision making process is characterized by the random walks of single-layer strategy network.Secondly,a multiplex strategy network is constructed to describe the influence of decision results on decision behavior by network inter-layer migration and intra-layer migration.Then,combined with frequency approximation probability,a single-step strategy prediction algorithm based on the strategy network model is proposed.Finally,through a multi-stage decision simulation process data and a typical game data,the accuracy and practicability of the above method are verified.Experimental results indicate that prediction algorithm multiplex strategy network based can effectively capture the characteristics of human decision behavior and reach 70%accuracy.
作者 李晓寒 祁明泽 邓宏钟 LI Xiaohan;QI Mingze;DENG Hongzhong(College of Systems Engineering,National University of Defense Technology,Changsha 410073,China;College of Liberal Arts and Sciences,National University of Defense Technology,Changsha 410073,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第5期161-168,共8页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金项目(71771214,71690233,71971213) 湖南省研究生科研创新项目(CX2020001)。
关键词 多层网络 随机游走 决策预测 multiplex network random walks decision prediction
  • 相关文献

参考文献7

二级参考文献78

  • 1贾春福,钟安鸣,张炜,马勇.网络安全不完全信息动态博弈模型[J].计算机研究与发展,2006,43(z2):530-533. 被引量:11
  • 2S M劳斯.随机过程(M)[M].北京:中国统计出版社,1997..
  • 3Boutilier C, Dean T, Hank S. Decision theoretic planning: structural assumptions and computational leverage[J]. Journal of Artificial Intelligence Research, 1999, 11 : 1 - 49.
  • 4Astrom K J. Optimal control of Markov decision processes with incomplete state estimation[J]. Journal of Mathematical Analysis and Application, 1965, 10:174 - 205.
  • 5Eagle J. The optimal search for a moving target when the search path is constrained[J]. Operations Research, 1984, 32: 1107- 1115.
  • 6Sondik E J. The optimal control of partially observable Markov processes over the infinite horizon: discounted case[J]. Operations Research, 1978, 26:282 - 304.
  • 7Cassandra A R. A survey of POMDP applications[C]//Proceedings of AAAI Full Symposium on Planning with Partially Observable Markov Decision Processes. 1998, 17- 24.
  • 8White C C. Seherer W T. Solution procedures for parlially observed Markov decision processes [J]. Operations Research. 1989, 37(5): 791-797.
  • 9Smallwood R D. Sondik E J. Optimal control of partially observable processes over the finite horizon[J]. Operations Research. 1973, 21: 1071- 1088.
  • 10Sondik E J. The optimal control of partially observable Markov processes[D]. Department of Electrical Engineering, Stanford University, Stanford, CA, 1971.

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部