期刊文献+

基于数据挖掘的故障模式、影响及危害性分析改进方法 被引量:9

Improved Method of Failure Mode,Effects and Criticality Analysis Based on Data Mining
在线阅读 下载PDF
导出
摘要 针对故障模式、影响及危害性分析(failure mode,effects and criticality analysis,FMECA)在复杂系统风险分析中存在主观性、局限性和单一性的缺点,提出一种基于数据挖掘的FMECA改进方法。通过数据挖掘FMECA风险清单,并利用Python和数据库优化了相应的算法。结合实例案例分析,给出了风险等级评估带状图、故障层次关系图以及改进的风险矩阵图等。结果表明:改进的FMECA能够充分利用相关数据,使得分析结果更加快速、准确和全面,有助于进一步发现设备潜在故障之间的关系,为设备的智能健康管理提供了支持。 Aiming at the defects of subjectivity,limitation and singleness of failure mode,effects and criticality analysis(FMECA)in risk analysis of complex system,an improved method of FMECA based on data mining was proposed.The corresponding algorithm was optimized by using Python and database through data mining FMECA risk list.The risk level assessment strip diagram,fault hierarchy diagram and improved risk matrix diagram were given combined with the case analysis.The results show that the improved FMECA can make full use of relevant data,making the analysis results more rapid,accurate and comprehensive,helping to further discover the relationship between potential failures of the equipment,and providing support for the intelligent health management of the equipment.
作者 王越 陈国兵 李军 WANG Yue;CHEN Guo-bing;LI Jun(School of Power Engineering, Naval University of Engineering, Wuhan 430000, China)
出处 《科学技术与工程》 北大核心 2021年第24期10536-10542,共7页 Science Technology and Engineering
基金 国家自然科学基金(51702364)。
关键词 故障模式、影响及危害性分析(FMECA) 数据挖掘 PYTHON 可靠性分析 failure mode failure mode effects and criticality analysis(FMECA) data mining Python reliability analysis
  • 相关文献

参考文献12

二级参考文献60

共引文献188

同被引文献84

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部