期刊文献+

基于时序差分学习的充电站有序充电方法 被引量:12

Coordinated charging approach for charging stations based on temporal difference learning
在线阅读 下载PDF
导出
摘要 电动汽车有序充电是智能用电领域的重要议题。传统的模型驱动方法需对充电行为建模,但受相关参数的强随机性等影响,相关模型不能完全反映充电行为的不确定性。考虑到数据驱动下的无模型强化学习(MFRL)具有不依赖先验建模、适应强非线性关系样本数据的优势,提出将其应用于充电站的有序充电负荷优化。针对性地构建以用户充电需求能否获得满足为状态的马尔可夫决策过程(MDP),并利用充电完成度指标和满意度惩罚项改进代价函数。具体采用增量式的时序差分学习(TDL)算法训练历史数据,以保证数据规模下的计算性能。算例以充电站实测数据为环境,结果表明,在无需对充电行为进行先验建模的情况下,所提方法能够准确、快速地制定充电站有序充电计划。 Coordinated charging of electric vehicles(EVs)is becoming an important topic for the smart demand management.Traditional model-driven methods are highly dependent on the accuracy of models for charging behavioral characteristics.However,affected by the strong stochastics of related parameters,etc.,the selection of relevant models cannot fully reflect their uncertainties.Considering that the data-driven model-free reinforcement learning algorithms has the advantages of not relying on pre-modeling,and adapting to data samples with strong nonlinear relationships,it is proposed to be applied to optimize the charging loads of the EV charging stations.In the Markov decision process customized for the satisfaction of EV charging need,both a charging completion degree index and a penalty term for user′s charging satisfaction are introduced to improve the policy evaluating function.Specifically,in order to guarantee the computational speed underneath the volume of charging data,the temporal difference learning algorithm is used for the training with incremental updates.The simulation is carried out with the real-world data from one charging station.Results show that the proposed algorithm can accurately and quickly calculate the coordinated charging schedules without the pre-modeling for the EV charging behavior parameters.
作者 江明 许庆强 季振亚 JIANG Ming;XU Qingqiang;JI Zhenya(State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210024,China;School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210046,China)
出处 《电力工程技术》 北大核心 2021年第1期181-187,共7页 Electric Power Engineering Technology
基金 江苏省自然科学青年基金资助项目(BK20190710)。
关键词 电动汽车 有序充电 无模型强化学习 数据驱动方法 马尔可夫决策过程(MDP) electric vehicle coordinated charging model-free reinforcement learning data-driven approach Markov decision process(MDP)
  • 相关文献

参考文献9

二级参考文献200

  • 1杜娟娟,裴云庆,王兆安.电动车铅酸蓄电池的脉冲快速充电设计[J].电源技术应用,2005,8(3):28-31. 被引量:21
  • 2褚浩然,郑猛,杨晓光,韩先科.出行链特征指标的提出及应用研究[J].城市交通,2006,4(2):64-67. 被引量:44
  • 3QIAN Kejun, ZHOU Chengke, ALLAN M, et al. Modeling of load demand due to EV battery charging in distribution systems [J]. IEEE Trans on Power Systems, 2011, 26(2): 802-810.
  • 4TREMBLAY O, DESSAINT L A, DEKKICHE A I. A generic battery model for the dynamic simulation of hybrid electric vehicles[C]// Proceedings of IEEE Vehicle Power and Propulsion Conference, September 9-12, 2007, Arlington, TX, USA: 284-289.
  • 5CHEN M, RINCON-MORA G A. Accurate electrical battery model capable of predicting, runtime and I-V performance[J]. IEEE Trans on Energy Conversion, 2006, 21 (2): 504-511.
  • 6KROEZE R C, KREIN P T. Electrical battery model for use ira dynamic electric vehicle simulations[C]// Proceedings of IEEE Power Electronics Specialists Conference, June 15-19, 2008, Rhodes, Greece; 1336-1342.
  • 7CLEMENT NYNS K, VAN REUSEL K, DRIESEN J. The consumption of electrical energy of plug-in hybrid electric vehicles in Belgium[C]// Proceedings of the 2nd European Ele Drive Transportation Conference, May 30-June 1, 2007, Brussels, Belgium: 1-8.
  • 8DUVALL M, KNIPPING E. Environmental assessment of plug-in hybrid electric vehicles: Vol 1 national wide greenhouse gas emissions[R]. Beijing, China: Electric Power Research Institute (EPRI), 2007.
  • 9CLEMENT-NYNS K, HAESEN E, DRIESEN J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Trans on Power Systems, 2010, 25(1) :371-380.
  • 10DENHOLM P, SHORT W. An evaluation of utility system impacts and benefits of optimally dispatched plug-in hybrid electric vehicles[M]. Golden, CO, USA: National Renewable Energy Laboratory, 2006.

共引文献675

同被引文献238

引证文献12

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部