期刊文献+

分数阶时滞基因调控网络一致稳定性分析 被引量:3

Uniform stability analysis of fractional-order gene regulatory networks with time delay
原文传递
导出
摘要 相比于传统的整数阶基因调控网络,通过引入分数阶微分算子构建了一类新型的分数阶时滞基因调控网络,精确地描述了基因m RNA(信使核糖核酸)和蛋白质之间的关系.针对m RNA和蛋白质之间的复杂动态行为,通过利用Caputo分数阶微积分的性质和不等式的放缩技巧,结合所构建的向量范数,给出了系统一致稳定性的充分判据;此外,运用Brower不动点定理证明系统平衡点的存在性和唯一性.所得结论可作为已有文献的一种推广,便于实际工程应用.最后,通过仿真实例验证了所得结论的有效性和正确性. Compared with the traditional integer-order gene regulatory networks,a new class of fractional-order gene regulatory networks with time delay was put forward by introducing fractional-order differential operators into integer-order model.Fractional-order gene regulatory networks can accurately describe the relationship between gene mRNA(messenger Ribonucleic Acid) and protein.In order to deal with the complex dynamic behavior between mRNA and protein,the properties of Caputo fractional-order calculus, inequality analysis technique and the constructed vector norm were used.Then,some sufficient criteria for the system’s uniform stability were given.In addition, based on the Brower fixed point theorem,the existence and uniqueness of equilibrium point of system were proved.The presented results can be used as a generalization of the existing literature,and they are convenient for practical engineering application.Finally,the validity and correctness of the obtained conclusions was verified by simulation example.
作者 丁芝侠 陈冲 胡蝶 DING Zhixia;CHEN Chong;HU Die(School of Electrical and Information Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第12期27-31,37,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61703312)。
关键词 基因调控网络 时滞 Caputo分数阶微积分 向量范数 一致稳定性 Brower不动点定理 gene regulatory networks time delay Caputo fractional-order calculus vector norm uniform stability Brower fixed point theorem
  • 相关文献

参考文献5

二级参考文献33

  • 1虞慧婷,吴骋,柳伟伟,付旭平,贺佳.基因调控网络模型构建方法[J].第二军医大学学报,2006,27(7):737-740. 被引量:6
  • 2薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计[J].控制理论与应用,2007,24(5):771-776. 被引量:168
  • 3Caponetto R,Dongola G,Fortuna L,et al.Fractional order systems:modeling and control applications[M].Singapore:World Scientific,2010.
  • 4Podlubny I.Fractional-order systems and PIλDμ-controllers[J].IEEE Trans Automatic Control,1999,44(1):208-218.
  • 5Chen Yangquan,Bhaskaran T,Xue Dingyu.Practical tuning rule development for fractional order proportional and integral controllers[J].Journal of Computational and Nonlinear Dynamics,2008,3(2):0214031-0214038.
  • 6Monje C A,Vinagre B M,Feliu V,et al.Tuning and auto-tuning of fractional order controllers for industry applications[J].Control Engineering Practice,2008,16(7):798-812.
  • 7Li Hongsheng,Luo Ying,Chen Yangquan.A fractional order proportional and derivative(FOPD)motion controller:tuning rule and experiments[J].IEEE Transactions on Control Systems Technology,2010,18(2):516-520.
  • 8Luo Ying,Chen Yangquan.Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems[J].Automatica,2012,48(9):2159-2167.
  • 9Das S,Pan I,Das S,et al.Improved model reduction and tuning of fractional-order PIλDμcontrollers for analytical rule extraction with genetic programming[J].ISA Transactions,2012,51(2):237-261.
  • 10Wang Dejin,Gao Xueli.H∞design with fractionalorder PDμcontrollers[J].Automatica,2012,48(5):974-977.

共引文献19

同被引文献8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部