期刊文献+

基于支持向量机的轨道司机驾驶水平评价方法研究 被引量:2

Evaluation Method of Driving Level of Urban Rail Transit Drivers Basedon Support Vector Machine
在线阅读 下载PDF
导出
摘要 针对轨道交通司机驾驶水平定量化评价问题,笔者在数据提取、数据降噪和数据降维的基础上,构建了基于支持向量机的轨道司机驾驶水平评价模型方法对该问题进行了研究。研究结果表明:选用高斯核函数的SVM模型在准确率和稳定性上要优于普通、线性和多项式SVM模型,和人工评价结果比较其余弦相似度均高于0.98,模型评价结果的有效性。 Aiming at the quantitative evaluation of the driving level of rail transit drivers,based on data extraction,data denoising and data dimensionality reduction,an evaluation model of rail drivers' driving level based on support vector machine was established and studied.The research results show that the accuracy and stability of SVM model using Gaussian kernel function is better than that of ordinary,linear and polynomial SVM models.Compared with the manual evaluation results,the cosine similarity of SVM model with Gaussian kernel function is higher than 0.98,which indicates the validity of evaluation results of the proposed model.
作者 刘杰 LIU Jie(Chongqing Vocational Institute of Engineering,School of Intelligent Manufacturing and Transportation,Chongqing 402260,China)
出处 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第10期31-36,共6页 Journal of Chongqing Jiaotong University(Natural Science)
基金 国家自然科学基金项目(61703351) 五邑大学校内科研项目(2018AL033)。
关键词 交通工程 司机驾驶水平评价 行车数据 小波降噪 主成分分析 支持向量机 余弦相似度 traffic engineering driver driving level evaluation driving data wavelet denoising principal component analysis support vector machine cosine similarity
  • 相关文献

参考文献5

二级参考文献23

共引文献176

同被引文献22

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部