期刊文献+

图像融合的循环神经网络去雾算法 被引量:5

Recurrent Network for Image Dehazing Based on Image Fusion Scheme
在线阅读 下载PDF
导出
摘要 传统的图像融合去雾算法通过统计大量图像特征来设置融合权重,不仅耗时费力,还易出现误差.为此,本文提出了图像融合的循环神经网络来解决该问题.首先,从初始雾图中推导其衍生的白平衡图像、对比度增强图像、伽马校正图像,作为去雾所需的融合图像;随后,构建编码解码网络的去雾模型,并将三张融合图像与初始雾图相串联,共同作为网络的输入.利用此网络学习和生成融合图像对应的权重图,以融合信息估计无雾图像,从而解决传统图像融合去雾算法中权重计算耗时费力,易产生误差的问题;最后,为了进一步优化去雾结果,在编码解码的网络模型中嵌入循环单元,构建循环编码解码网络,即将上次循环时网络输出作为下次循环时网络输入,同时使循环单元中的隐藏状态也随之传递,以便更好优化去雾结果.实验结果表明,在合成和真实图像的测试下,本文算法都具有较高去雾精度,与已有算法相比,其去雾精度提高了19%,能有效用于工程实践中. Conventional image dehazing methods via image fusion strategy set fusion weights depending on static features of images,which not only cost time but also easily occur error.In order to solve these problems,we propose a recurrent network based on images fusion scheme.Firstly,we derives the white balance image,contrast enhanced image and gamma correction image from the hazy image,as the fused images.Secondly,these images concatenated with the hazy image serves as the input of our proposed encoder-decoder network.By learning and generating fusion weights for three derived images,this network estimates the clear image effectively.Lastly,we embed the recurrent unit into the encoder-decoder network for constructing the recurrent network and optimize the dehazing result iteratively.Specifically,when we pass the output of the network back to input,the hidden status which is saved in the recurrent unit is also passed to the corresponding module in next iteration.Experiments demonstrate that our approach achieve superior performance on both synthetic and real images.Comparing with existing methods,the accuracy of our method has been improved 19%.Hence,it can be used in engineering practice.
作者 任敏敏 REN Min-min(Information Engineering Department,Engineering University of PAP,Xi'an 710086,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第7期1513-1518,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(51975462)资助。
关键词 图像融合 循环神经网络 编码解码 图像去雾 image fusion recurrent neural network encoder decoder image dehazing
  • 相关文献

参考文献4

二级参考文献18

  • 1李金宗,张泽旭,魏祥全,王雨晖.基于双色性反射模型的彩色不变特征的研究[J].系统仿真学报,2001,13(S2):148-151. 被引量:3
  • 2江兴方,金龙,何隆华,陶纯堪.基于Retinex彩色图像增强及其闭合区域提取的研究(英文)[J].光子学报,2007,36(3):565-567. 被引量:9
  • 3曹美玲,蔡轶珩,刘长江,沈兰荪.基于ICC标准的新型舌象仪的彩色校正研究[J].测控技术,2007,26(5):23-25. 被引量:7
  • 4GASPARINI F, SCHETTINI R. Color correction for digital photographs [C]. Proceedings of the 12th International Conference on Image Analysis and Processing, 2003 : 646-651.
  • 5GASPARINI F, SCHETTINI R. Color balancing of digital photos using simple image statistics[J]. Pattern Recognition, 2004,37(6) : 1201-1217.
  • 6FINLAYSON G, HORDLEY S. Improving gamut mapping color constancy[J]. IEEE Transactions on Image Processing, 2000,9(10) :1774- 1783.
  • 7CARDEI V, FUNT B, BARNARD K. Estimating the scene illumination chromaticity using a neural network[J].JOSA A, 2002,19 : 2374-2386.
  • 8SANDRA S, ARBEL T, JAMES J C. Active Bayesian color constancy with non-uniform sensors[C]. Proceedings of the 16th International Conference on Pattern Recognition, 2002, 2: 681-684.
  • 9CAI Yi heng, SHEN Lan-sun, WEI Bao guo, et al. Color reproduction in computer Vision [ C]. SPIE, 2005,60431V ( 1- 9).
  • 10FUNT B, CARDEI V, Bootstrapping color constancy [C]. SPIE: Electronic Imaging IV, 1999,3644: 421-428.

共引文献71

同被引文献51

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部