期刊文献+

基于混合小波变换的医学超声图像自适应去斑 被引量:1

ADAPTIVE DESPECKLING FOR MEDICAL ULTRASOUND IMAGE BASED ON HYBRID WAVELET TRANSFORMATION
在线阅读 下载PDF
导出
摘要 针对小波去斑方法在医学超声图像抑斑上的不足,提出一种混合离散小波变换DWT(Discrete Wavelet Transform)和双树复小波变换DTCWT(Dual-tree Complex Wavelet Transform)进行阈值处理和变量收缩的医学超声图像自适应去斑算法。首先,在小波域,根据小波系数能量的特点,计算综合阈值实现图像预处理;然后,结合小波系数的尺度相关性,提出一种改进的三变量收缩函数,实现图像去斑。实验结果表明该方法较已有的经典方法更为有效,一般情况信噪比可提高0.6-2.6dB,图像边缘信息保持能力更突出。 Aiming at the shortage of traditional wavelet-based despeckling methods for medical ultrasound images, we present a novel adaptive despeckling algorithm for medical ultrasound image, which applies the hybrid discrete wavelet transform (DWT) and dual-tree complex wavelet transform (DTCWT) in threshold processing and variable shrinking. First, the synthesis threshold in wavelet domain is calculated according to the feature of wavelet coefficients energy to realise image preprocessing; Then, an improved trivariate shrinkage function is presented in combination with the scale correlation of wavelet coefficients to implement image despeckling. Experimental results demonstrate that our method is more effective than the existing classic methods, which can raise the signal-to-noise ratio (SNR) by 0.6~2.6 dB with better performance of edge preservation in general circumstance.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第10期202-205,233,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61201423 61105010) 武汉市晨光计划项目(201150431095) 湖北省高等学校优秀中青年科技创新团队计划项目(T201202) 湖北省重点实验室开放基金项目(znss 2013B016)
关键词 离散小波变换 双树复小波变换 图像去斑 DWT DTCWT Image despeckling
  • 相关文献

参考文献3

二级参考文献16

  • 1赵久奋,任德新,赵玖玲,闫肃.相干斑噪声抑制技术研究[J].仪器仪表学报,2006,27(z2):1413-1416. 被引量:8
  • 2Xiao T. ,Hu S. H. ,Xiao Y. ,2-D DFF-DWT application to multidimensional signal processing, Proc. ICSP 2006, pp. 1306-1309.
  • 3Xiao T. , Hu S. H. , Xiao Y. , 2-D hybrid wavelet-Fourier transformation, Proc. ICSP 2006, pp. 109-111.
  • 4Donald P. Orofinoand Peder C. Pedersen, Efficient Angular Spectrum Decomposition of Acoustic Sources-Part 1-Theory, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, VoL. 40, No. 3, MAY 1993, pp. 238- 249.
  • 5Lee W-L. ,Chen Y-C. and Hsieh K-S. , Ultrasonic Liver Tissues Classification by Fractal Feature Vector Based on M-Band Wavelet Transform, IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 3, MARCH 2003, pp. 382-392.
  • 6Ahmadian A. , Mostafa A. , Abolhassani M. D. and Salimpour Y. , A texture classification method for diffused liver diseases using Gabor wavelets, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, September 1- 4, 2005, pp. 1567-1570.
  • 7Nizamettin Aydin, Farokh Marvasti and Hugh S. Markus,Embolic Doppler Ultrasound Signal Detection Using Discrete Wavelet Transform, IEEE Transactions on Information Technology in Biomedicine, June 2004,8 ( 2 ) : 182-190.
  • 8Stefan Ericsson and Niklas Grip, Efficient Wavelet Prefilters With Optimal Time-Shifts, IEEE Transactions on Signal Processing ,July 2005,53 ( 7 ) :2451-2461.
  • 9Felix C. A. , Fernandes, Rutger L. C. van Spaendonck, and C. Sidney Burrus, Muhidimensional, Mapping-Based Complex Wavelet Transforms, IEEE Transactions on Image Processing, January 2005,14 ( 1 ) : 110-124.
  • 10McCanny P, Masud S, McCanny J, Design and Implementation of the Symmetrically Extended 2-D Wavelet Transform,IEEE International Conference on Acoustics,Speech,and Signal Processing, 2002. Proceedings. ( ICASSP'02 ) , Volume : 3,13-17 May 2002, Page ( s ) : III-3108-III-3111 vol. 3.

共引文献37

同被引文献19

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部