期刊文献+

使用改进蚁群算法的AGV路径规划研究 被引量:21

Research on Path Planning for AGV Based on Improved Ant Colony Algorithm
在线阅读 下载PDF
导出
摘要 AGV路径规划问题是AGV研究领域的一个关键技术问题.针对传统的蚁群算法耗时长,搜索效率低,容易出现次优的缺点,改进了计算基本蚁群算法启发因子的方法;提出了优胜劣汰机制以及全局信息素调整方案,合理地更新了路径规划中的信息素;利用最大最小蚂蚁系统对路径上信息素进行了限制;研究了路径规划中死锁问题的解决方法.最后给出了基于改进蚁群算法的AGV路径规划步骤并进行了仿真实验.仿真实验结果表明,在该算法作用下,AGV路径规划的搜索效率优于传统蚁群算法,且规划路径更短,提高了搜索的准确性. AGV path planning is a key technical issue in AGV research.In view of the disadvantages of the traditional ant colony algorithm,such as time-consuming,low search efficiency and sub-optimal disadvantages.We improve the method to calculate the heuristic factor of basic ant colony algorithm.Global pheromone adjustment program,which reasonably updates the pheromone in the path planning;limits the pheromone on the path by using the maximum and minimum ant system;and studies the solution to the deadlock problem in path planning.Finally,the AGV path planning step based on improved ant colony algorithm is given and the simulation experiment is carried out.The simulation results show that under the action of the algorithm,the search efficiency of AGV path planning is better than that of the traditional ant colony algorithm,and the planning path is shorter,which improves the accuracy of search.
作者 葛志远 肖本贤 GE Zhi-yuan;XIAO Ben-xian(School of Electrical Engineering and Automation,Hefei University of Technology,Anhui Hefei230009,China)
出处 《机械设计与制造》 北大核心 2020年第6期241-244,248,共5页 Machinery Design & Manufacture
关键词 路径规划 AGV 蚁群算法 信息素 最大最小蚂蚁系统 死锁现象 Path Planning AGV Ant Colony Algorithm Pheromones Maximum and Minimum Ant System Deadl-ock Phenomenon
  • 相关文献

参考文献5

二级参考文献38

  • 1许梁海,倪志伟,赖大荣.混合型蚁群算法及其应用研究[J].电脑知识与技术,2005(8):68-70. 被引量:2
  • 2高海昌,冯博琴,朱利b.智能优化算法求解TSP问题[J].控制与决策,2006,21(3):241-247. 被引量:123
  • 3Reynolds R G.An introduction to cultural algorithms[C]//Proceedings of the 3rd Annual Conference on Evolutionary Programming,San Diego,California, 1994: 131-139.
  • 4任伟建,陈建玲,韩冬,王凤好.蚁群算法综述[J].2007年中国控制与决策学术年会论文集,2007:357.
  • 5ANTARIKSH B.A mobile robot path planning using genetic artificial immune network algorithm[C]// Proceedings of the World Congress on Nature and Biologically Inspired Computing.Piscataway,USA:IEEE,2009:1536-1539.
  • 6MAKI K.Real time mapping and dynamic navigation for mobile robots[J].International Journal of Advanced Robotic Systems,2007,4(3):323-338.
  • 7GU Jiajun,CAO Qixin.Path planning for mobile robot in a 2.5-dimensional grid-based map[J].Industrial Robot,2011,38(3):315-321.
  • 8HART P,NILSSON N,RAPHAEL B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE Transactions on Systems Science and Cybernetics,1968,4(2):100-107.
  • 9DIJKSTRA E W.A note on two problems in connexion with graphs[J].Numerische Mathematik,1959,1(1):269-271.
  • 10GU Jiajun,CAO Qixin.Path planning using hybrid grid representation on rough terrain[J].Industrial Robot,2009,36(5):497-502.

共引文献250

同被引文献199

引证文献21

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部