期刊文献+

基于深度学习的步态识别算法优化研究 被引量:4

Research on Optimization of Gait Recognition Algorithm Based on Deep Learning
在线阅读 下载PDF
导出
摘要 基于深度学习的神经网络,对步态识别算法进行了优化研究。利用粒子群优化BP神经网络阈值、权值,在神经网络中代入优化后的初始值进行训练,避免陷入局部最优。通过Vicon MX系统对角度特征值进行采集,利用基于粒子群优化BP神经网络进行识别,验证其识别步态的可行性;筛选出传感器系统特征值,在对其优化改进时选取粒子群优化BP神经网络。与传统神经网络法、粒子群优化法相比,基于粒子群优化BP神经网络法的识别方式,识别时间短且识别率高。 Based on the deep learning neural network,this paper studies the optimization of gait recognition algorithm.The threshold and weight of BP neural network are optimized by particle swarm optimization,and the initial value after optimization is substituted into the neural network for training to avoid falling into local optimization. The angle eigenvalues are collected by vicon MX system and identified by BP neural network based on particle swarm optimization to verify the feasibility of gait recognition;the eigenvalues of sensor system are screened out and the BP neural network based on particle swarm optimization is selected for optimization and improvement of sensor system.Compared with the traditional neural network method and particle swarm optimization method,the recognition method of BP neural network based on particle swarm optimization is characterized by short recognition time and high recognition rate.
作者 张馨心 姚爱琴 孙运强 白桂峰 郭瑞琦 ZHANG Xin-xin;YAO Ai-qin;SUN Yun-qiang;BAI Gui-feng;GUO Rui-qi(School of Communication and Information Engineering,North University of China,Taiyuan 030051,China)
出处 《自动化与仪表》 2020年第4期70-74,共5页 Automation & Instrumentation
基金 山西省研究生教育创新项目(2019BY107) 国家自然基金项目(61774137)。
关键词 步态识别 BP神经网络 粒子群 深度学习 识别率 gait recognition BP neural network particle swarm optimization deep learning recognition rate
  • 相关文献

参考文献4

二级参考文献28

  • 1张前进,孙炎增,徐素莉.基于连续HMM与静态外观信息模型融合的步态识别[J].微电子学与计算机,2009,26(3):45-48. 被引量:4
  • 2YU Haitao,LI Mantian,CAI Hegao.Analysis on the Performance of the SLIP Runner with Nonlinear Spring Leg[J].Chinese Journal of Mechanical Engineering,2013,26(5):892-899. 被引量:8
  • 3Sup F, Varol H A, Goldfarb M. Upslope walking with a pow- ered knee and ankle prosthesis: Initial results with an amputee subject[J]. IEEE Transactions on Neural Systems and Rehabili- tation Engineering, 2011, 19(1): 71- 78.
  • 4Varol H A, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis[J]. IEEE Trans- actions on Biomedical Engineering, 2010, 57(3): 542-551.
  • 5Flowers W C, Mann R W. Electrohydraulic knee-torque con- troller for a prosthesis simulator[J]. SAME Journal of Biome- chanical Engineering, 1977, 99(4): 3-8.
  • 6Kapti A O, Yucenur M S. Design and control of an active ar- tificial knee joint[J]. Mechanism and Machine Theory, 2006, 41(12): 1477-1485.
  • 7Humphrey L, Hemami H, Barin K, et al. Simulated responses to support surface disturbances in a humanoid biped model with a vestibular-like apparatus[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2010, 40(1): 109-119.
  • 8彭子平,张严虎,潘露露.隐马尔科夫模犁原理及其重要应用[J].计算机科学,2008,35(4A):138-139.
  • 9Hinton,G.E.andSalakhutdinov,R.R. ( 2006 ) Reducing the imensionality of data with neuralnetworks.Science.2006.
  • 10Alex Krizhevsky, llyaSutskever.and Geoffrey E.Hinton. ( 2012) hnageNet Classification with DeepConvolutional Neural Networks.inAdvancesin Neural Information Processing 25 (NIPS 2012) .MIT Press.Cambridge.MA.

共引文献68

同被引文献34

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部