期刊文献+

基于CNN和DLTL的步态虚拟样本生成方法 被引量:1

Gait virtual sample generation method based on CNN and DLTL
在线阅读 下载PDF
导出
摘要 针对步态识别在反恐、安防领域亟待解决的小样本问题,提出了一种基于深度卷积神经网络(convolutional and neural network,CNN)和DLTL(dual learning and transfer learning)的步态虚拟样本生成方法。首先用基于VGG19的深度卷积神经网络模型低层响应提取步态风格特征图,然后利用基于对抗网络的对偶学习(dual learning,DL)对风格特征图进行风格训练,得到风格特征模型;其次利用VGG19模型的高层响应提取步态内容特征图,然后让步态内容特征图对风格特征模型中的风格特征进行学习;最后使用迁移学习(transfer learning,TL)获得步态虚拟偏移样本。实验结果表明,经过DLTL风格学习生成的步态虚拟样本虽然整体风格发生改变,但人体步态特征没有改变,可有效扩充小样本容量;当虚拟样本增加到一定数量时,步态识别率有所提升。该方法与现有步态虚拟样本生成方法进行对比实验,结果表明该算法优于现有方法,能够大量生成虚拟样本且稳定提高步态识别的识别率。 To solve the problem of small sample of gait recognition in the field of counterterrorism and security issues,this paper proposed a novel gait virtual sample generation method based on deep CNN and DLTL.Firstly,it extracted gait style feature map based on low-level of CNN model VGG19,and then it used the DL to carry on the style feature training.Thus it made style feature model.Moreover,high-level of VGG19 extracted gait context feature map,and then it used the TL to make context feature map carry on the style characteristic learning.Finally,it obtained the virtual migration samples.Experimental results demonstrate that these virtual samples remain individual gait feature but style feature.So this method can effectively expand small sample size.At the same time,when the number of virtual samples increase to a certain number,gait recognition rate has improved.Compared with the existing virtual sample generation method,the method has a better performance,which can generate virtual samples in large numbers and improve the recognition rate of gait recognition steadily.
作者 支双双 赵庆会 金大海 唐琎 Zhi Shuangshuang;Zhao Qinghui;Jin Dahai;Tang Jin(Engineering Training Center,Xi’an Polytechnic University,Xi’an 710048,China;School of Information Science&Engineering,Central South University,Changsha 410083,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第1期291-295,共5页 Application Research of Computers
基金 国家自然科学基金重大研究计划集成项目(91220301) 国家自然科学基金资助项目(61502537) 湖南省自然科学基金资助项目(2016JJ2150).
关键词 步态识别 卷积神经网络 对偶学习和迁移学习 虚拟样本 步态识别率 gait recognition CNN DLTL virtual sample gait recognition rate
  • 相关文献

参考文献4

二级参考文献25

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:376
  • 2王飞跃.计算实验方法与复杂系统行为分析和决策评估[J].系统仿真学报,2004,16(5):893-897. 被引量:148
  • 3王飞跃.关于复杂系统的建模、分析、控制和管理[J].复杂系统与复杂性科学,2006,3(2):26-34. 被引量:65
  • 4Pan S ], Yang Q. A survey on transfer learning. IEEE Transaction on Knowledge and Data Engineering, 2010, 22(10) : 1345-1359.
  • 5Dai Wen-Yuan, Jin Ou, Xue Gui-Rong, et al. Eigentransfer: A unified framework for transfer learning//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Canada, 2009.. 193-200.
  • 6Rosenstein M T, Marx Z, Kaelbling L P, et al. To transfer or not to transfer//Proceedings of the 9th Annual Conference on Neural Information Processing Systems Workshop on Inductive Transfer: 10 Years Later. Whistler, Canada, 2005.
  • 7Shi Zhong-Zhi, Zhang ]30, Zhuang Fu-Zhen. Improving transfer learning by introspective reasoner//Proceedings of the 7th IFIP International Conference on Intelligent Information Processing. Guilin, China, 2012.. 27-38.
  • 8Blitzer J, Mcdonald R, Pereira F. Domain adaptation with structural correspondence learning//Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Sydney, Australia, 2006:120-128.
  • 9Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification//Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Prague, Czech Republic, 2007:440-447.
  • 10Ji Yang-Sheng, Chen Jia-Jun, Niu Gang, et al. Transfer learning via multi-view principal component analysis. Journal of Computer Science and Technology, 2011, 26(1) : 81-98.

共引文献548

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部