摘要
三氢化铝(AlH3)由于较高的含氢量、较高的质量和体积热值,及低温下快速分解释氢的特性,被视为是最有发展潜力的含能燃料之一,可显著提高推进剂的比冲。采用功率为270 W的激光点火实验台研究了3种粒径的AlH3样品(中位径分别为21.88、86.16、136.00μm)的点火燃烧性能。结果表明,整个火焰演变过程存在发展、稳定和衰退3个阶段。在实验工况范围内,随着样品粒径增大,最大火焰高度和直径均有所减小,最大光谱强度减小,点火延迟时间增大,自维持燃烧时间减少。当粒径由21.88μm增大到86.16μm,点火延迟时间由12 ms增大到130 ms,平均燃烧强度由371496减少至144016,而燃烧时间由238 ms减少至80 ms。因为粒径越大,比表面积越小,样品与氧化剂的接触面积越小,燃烧强度降低,样品燃烧不完全,导致自维持燃烧时间变短。
Aluminum hydride(AlH 3)is considered as one of the most promising energetic fuels due to its high hydrogen content,high mass and volumetric calorific value,and rapid hydrogen release rate at low temperatures.It may largely increase the specific impulse of the propellants.The ignition and combustion performances of AlH 3 crystals with different particle sizes(median diameters of 21.88,86.16,136.00μm)have been studied by using a laser ignition system with a power of 270 W.The results show that there are three stages of flame propagation,including flame development,stabilization and recession.In terms of the effects of experimental conditions,as the particle size increases,the maximum height and diameter of flame,self-sustaining combustion time,as well as the maximum spectral intensity decreases,but the ignition delay time was increased.As the particle size increase from 21.88μm to 86.16μm,the ignition delay time was increased from 12 ms to 130 ms,whereas the average combustion intensity was decreased from 371496 to 144016,with the combustion time decreased from 238 ms to 80 ms.The larger the particle size is,the smaller the specific surface area,the contact area of the sample with the oxidant are.The more incomplete combustion of the sample is,the shorter the self-sustaining burning time is.
作者
蔚明辉
李和平
唐根
徐星星
刘建忠
周禹男
徐江荣
YU Minghui;LI Heping;TANG Gen;XU Xingxing;LIU Jianzhong;ZHOU Yunan;XU Jiangrong(Institute for Energy Studies of Hangzhou Dianzi University,Hangzhou 310018,China;State Key Laboratory of Clean Energy Utilization of Zhejiang University,Hangzhou 310027,China;Hubei Institute of Aerospace Chemical Technology,Xiangyang 441000,China)
出处
《固体火箭技术》
EI
CAS
CSCD
北大核心
2020年第1期16-22,共7页
Journal of Solid Rocket Technology
基金
国家自然科学基金(51706057)