期刊文献+

基于ORB检测的特征匹配优化算法 被引量:6

Feature matching optimization algorithm based on ORB detection
在线阅读 下载PDF
导出
摘要 针对需要具有旋转不变性且具有实时性的任务场景,传统的局部特征提取算法SIFT与SURF不能满足实时性要求的现状,提出了一种基于ORB特征检测子的优化特征点匹配算法。首先针对在原始ORB特征匹配算法中出现的错误匹配问题,利用特征点的位置信息结合聚类算法提高匹配过程的速度与正确率,再通过均值漂移算法进一步提取出错误匹配点对。将所提方法应用于生产线产品外观缺陷检测设备,经过实际实验验证,该算法在ORB特征匹配中正确率提高至95%,能够满足实时使用的需要。 As traditional SIFT(Scale-Invariant Feature Transform)and SURF(Speeded Up Robust Features)local feature points matching algorithm dissatisfy real-time jobs,an optimized feature point matching algorithm based on ORB(Oriented FAST(Features from Accelerated Segment Test)and Rotated BRIEF(Binary Robust Independent Elementary Features))feature detection was proposed.For mismatched pairs in the original ORB feature matching algorithm,the position information of feature points was combined with the clustering algorithm to promote the speed and correct rate in the matching process,and then the mismatched pairs were further extracted by the mean shift algorithm.The proposed algorithm was applied to the appearance defect detection equipment of the production line.In the actual experiment,the accuracy of the proposed algorithm in ORB feature matching was improved to 95%,which can satisfy the needs of real-time jobs.
作者 杨溪远 陈斌 YANG Xiyuan;CHEN Bin(Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu Sichuan 610041,China;University of Chinese Academy Sciences,Beijing 100049,China;Guangzhou Electronic Technology of Chinese Academy of Sciences,Guangzhou Guangdong 510070,China)
出处 《计算机应用》 CSCD 北大核心 2019年第S02期81-84,共4页 journal of Computer Applications
基金 广东省重大科技专项(2017B03030617) 广东省产学研合作项目(2017B090901040)
关键词 ORB特征 特征点匹配 均值漂移 局部特征 图像对准 ORB(Oriented FAST(Features from Accelerated Segment Test)and Rotated BRIEF(Binary Robust Independent Elementary Features))feature feature point matching mean shift local feature image alignment
  • 相关文献

参考文献6

二级参考文献50

  • 1赵萌萌,曹建秋.基于边缘角点的SIFT图像配准算法[J].重庆交通大学学报(自然科学版),2013,32(4):721-724. 被引量:4
  • 2刘源,刘雪峰,邓建松,杨周旺.基于模态分析的三维模型全局结构优化[J].计算机辅助设计与图形学学报,2015,27(4):590-596. 被引量:5
  • 3李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:155
  • 4Kern J P,Pattichis M S.Robust multispectral image registration using mutual-information models[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(5):1494-1505.
  • 5Liu X Z,Tian Z,Chai C Y,et al.Multiscale registration of remote sensing image using robust SIFT features in steerable-domain[J].The Egyptian J Remote Sensing and Space Sci,2011,14(2):63-72.
  • 6Calonder M,Lepetit V,Ozuysal M,et al.BRIEF:Computing a local binary descriptor very fast[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(6):1281-1298.
  • 7Rublee E,Rabaud V,Konolige K,et al.ORB:An efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision,Barcelona,Spain,2011:2564-2571.
  • 8Rosten E,Drummond T.Machine learning for high-speed corner detection[C]//Lecture Notes in Computer Science,2006,3951:430-443.
  • 9Fischer M A,Bolles R C.Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395.
  • 10Marius M,Lowe D G.Fast approximate nearest neighbors with automatic algorithm configuration[C]//International Conference on Computer Vision Theory and Applications,Lisboa,Portugal,2009:331-340.

共引文献67

同被引文献60

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部