期刊文献+

一种改进的图像局部不变特征提取方法 被引量:3

AN IMPROVED METHOD FOR EXTRACTING IMAGE'S LOCAL INVARIANT FEATURE
在线阅读 下载PDF
导出
摘要 针对传统局部特征提取算法在提取特征点时效率不高,生成描述子需要计算主方向等问题,结合SURF算法和RGT(Radial Gradient Transform),在精度损失尽可能小的情况下提高局部不变特征提取速度,提出一种改进的AR-SURF(加速径向SURF)算法。该方法在特征检测阶段,在定位特征点时减少构造尺度空间时所计算的响应层个数,将求取对应点响应放在定位阶段。在特征描述阶段,取消确定主方向的过程,将特征点周围区域的Haar小波响应进行RGT变换,然后将特征点周围区域划分为多个同心圆,并统计特征点周围圆形区域内的响应结果,最后利用小波响应结果得到旋转不变的特征描述子。实验结果表明,AR-SURF算法节省了时空损耗,提升了定位速度,提取效果更好,更加合适于海量图片处理。 For some disadvantages existing in traditional local feature extraction algorithm,such as the inefficiency when extracting feature points and the need to calculate principal direction when generating descriptor,etc.,we propose in this paper an improved accelerated radial SURF algorithm by combining SURF algorithm and RGT( radial gradient transform) and speeding up the process of local invariant feature extraction in the circumstance of lesser precision loss as much as possible. In the step of feature detection,the algorithm decreases the number of response layers calculated in constructing the dimension space when locating the feature points,and places the course of corresponding point calculation in localisation phase. In the step of feature description,it cancels the process of determining principal direction,and conducts RGT transformation on Haar wavelet response in surrounding regions of feature point,then divides these regions into concentric circles and counts the response results within the surrounding circle regions of feature points as well,finally it uses these wavelet responding results to obtain the rotation-invariant feature descriptors. Experimental result demonstrates that AR-SURF algorithm saves the loss of time and space,increases the speed of localisation with better extraction effect,so it is more suitable for mass images processing.
出处 《计算机应用与软件》 CSCD 2016年第4期187-191,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61462069) 内蒙古自然科学基金项目(2014MS0622) 内蒙古科技大学校内基金项目(2011NCL054)
关键词 HAAR小波 径向梯度变换 旋转不变性 Haar wavelet Radial gradient transform Rotational invariance
  • 相关文献

参考文献15

  • 1Schmid C,Mohr R,Bauckhage C.Evaluation of interest point detectors[J].International Journal of computer vision,2000,37(2):151-172.
  • 2Dalal N,Triggs B.Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition,2005 CVPR,IEEE Computer Society Conference on,IEEE,2005,1:886-893.
  • 3Lindeberg T.Scale-space theory:A basic tool for analyzing structures at different scales[J].Journal of applied statistics,1994,21(1-2):225-270.
  • 4韩冰,王永明,孙继银.加速的Fast Hessian多尺度斑点特征检测[J].光学精密工程,2011,19(7):1686-1694. 被引量:2
  • 5Smith S M,Brady J M.SUSAN-a new approach to low level image processing[J].International journal of computer vision,1997,23(1):45-78.
  • 6郭莉莎,李俊山,朱英宏,马颖.基于多尺度FAST-9的图像快速匹配算法[J].计算机工程,2012,38(12):208-210. 被引量:7
  • 7Lowe D G.Distinctive image features from Scale-invariant keypoints[J].International journal of computer vision,2004,60(2):91-110.
  • 8Mikolajczyk K,Schmid C.Scale&affine invariant interest point detectors[J].International journal of computer vision,2004,60(1):63-86.
  • 9Bay H,Ess A,Tuytelaars T,et al.Speeded-up robust features(SURF)[J].Computer vision and image understanding,2008,110(3):346-359.
  • 10杨恒,王庆.一种新的局部不变特征检测和描述算法[J].计算机学报,2010,33(5):935-944. 被引量:35

二级参考文献50

  • 1丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 2庄志国,孙惠军,董继扬,陈忠.基于角点检测的图像匹配算法及其在图像拼接中的应用[J].厦门大学学报(自然科学版),2007,46(4):501-505. 被引量:19
  • 3Schaffalitzky F,Zisserman A.Multi-view matching for unordered image sets,or "how do I organize my holiday snaps?"// Proceedings of the 7th European Conference on Computer Vision.Copenhagen,2002:414-431.
  • 4Brown M,Szeliski R,Winder S.Multi-image matching using multi-scale oriented patches//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.San Diego,2005:510-517.
  • 5Snavely N,Seitz S M,Szeliski R.Photo tourism:Exploring photo collections in 3D.ACM Transactions on Graphics,2006,25(3):835-846.
  • 6Brown M,Lowe D G.Automatic panoramic image stitching using invariant features.International Journal of Computer Vision,2007,74(1):59-73.
  • 7Mikolajczyk K,Leibe B,Schiele B.Local feature for object class recognition//Proceedings of the 10th IEEE International Conference on Computer Vision.Beijing,2005:1792-1799.
  • 8Schmid C,Mohr R.Local grayvalue invariants for image retrieval.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(5):530-534.
  • 9Schmid C,Mohr R,Bauckhage C.Evaluation of interest point detectors.International Journal of Computer Vision,2000,37(2):151-172.
  • 10Dufournaud Y,Schmid C,Horaud R.Matching images with different resolutions//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Hilton Head Island,South Carolina,2000:612-618.

共引文献48

同被引文献28

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部