期刊文献+

基于扩展特征矩阵和双层卷积神经网络的微博文本情感分类 被引量:8

WEIBO TEXT SENTIMENT CLASSIFICATION BASED ON EXTENDED FEATURE MATRIX AND DOUBLE-LAYER CONVOLUTION NEURAL NETWORK
在线阅读 下载PDF
导出
摘要 针对现有深度学习方法在中文微博短文本分类任务中存在的数据稀疏、忽略微博文本中的表情和词语特征等问题,提出一种基于扩展特征矩阵和双层卷积神经网络的微博文本情感分类算法Dual CNN。针对微博用户常用的微博表情和多种词语特征,建立扩展特征矩阵;将融合扩展特征矩阵后的词向量,分别使用不同的文本编码方式输入卷积神经网络的两层,得到情感分类结果。通过在COAE2014任务4上的对比实验证明,Dual CNN算法取得了93.35%的分类准确率。相比于单层卷积神经网络算法和SVM等传统机器学习算法,Dual CNN模型具有明显的优势。 Existing deep learning methods have some problems in short text categorization task of Chinese micro-blog,such as data sparseness,ignorance of expression and word features in micro-blog text,etc.To solve these problems,this paper proposed a microblog text sentiment classification algorithm based on extended feature matrix and double-layer convolutional neural network.We called it Dual-CNN.An extended feature matrix was established for commonly-used expression and word features of weibo by weibo users.The word vectors fused with the extended feature matrix were input into the two layers of convolutional neural network by using different text encoding methods,and the emotional classification results were obtained.The comparative experiments on COAE2014 task 4 show that Dual-CNN algorithm achieves 93.35%classification accuracy.Compared with traditional machine learning algorithms such as single-layer convolutional neural network algorithms and SVM,Dual-CNN has obvious advantages.
作者 李卫疆 伊靖 Li Weijiang;Yi Jing(Information Engineering and Automation Institution,Kunming University of Science and Technology,Kunming 650000,Yunnan,China)
出处 《计算机应用与软件》 北大核心 2019年第12期150-155,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61363045)
关键词 卷积神经网络 中文微博 情感分类 扩展特征矩阵 CNN Chinese Weibo Sentiment classification Extended feature matrix
  • 相关文献

参考文献2

二级参考文献21

  • 1Pang B, Lee L. Seeing stars: Exploiting class relation- ships for sentiment categorization with respect to rating scales[C]//Proceedings o~ the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005: 115-124.
  • 2LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [C]//Pro- ceedings of the IEEE, 1998, 86(11) : 2278-2324.
  • 3Yih W, He X, Meek C. Semantic parsing for single-rela- tion question answering[C]//Proceedings of ACL 2014.
  • 4Shen Y, He X, Gao J, et al. Learning semantic repre- sentations using convolutional neural networks for web search[C]//Proceedings of the companion publication of the 23rd international conference on World wide web companion. International World Wide Web Confer- ences Steering Committee, 2014: 373-374.
  • 5Blunsom P, Grefenstette E, Kalehbrenner N. A conv- olutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Associ- ation for Computational Linguistics. 2014.
  • 6Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J].The Journal of Ma- chine Learning Research, 2011, 12: 2493-2537.
  • 7dos Santos C N, Gatti M. Deep convolutional neural networks for sentiment analysis of short texts[C]// Proceedings of the 25th International Conference on Computational Linguistics (COLING). Dublin, Ire-land. 2014.
  • 8Kim Y. Convolutional neural networks for sentence classification[C]//Proceedings of the EMNLP,2014.
  • 9Turney P D. Thumbs up or thumbs down? : semantic orientation applied to Unsupervised classification of reviews[C]//Proceedings of the 40th annual meeting on association for computational linguistics. Associa- tion for Computational Linguistics, 2002: 417-424.
  • 10Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [C]//Advances in neural information processing sys- tems. 2012: 1097-1105.

共引文献101

同被引文献67

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部