期刊文献+

基于半监督学习的微博情感倾向性分析 被引量:6

Sentiment analysis of Chinese Micro-blog based on semi-supervised learning
原文传递
导出
摘要 微博情感倾向性分析通常指对中文微博中每个句子褒义、贬义或者中性的情感进行自动分类。针对微博碎片化和情感类别失衡的特点,在半监督学习reserved self-training方法的框架基础上提取了适用于微博情感分类的文本特征,并提出了针对情感倾向性分析通过训练度阈值设定的方法来优化reserved self-training迭代终止的条件,在保留reserved self-training能有效处理微博语料中语料情感不平衡问题的优点基础上,防止了训练过度情况的发生。COAE 2014微博情感倾向性评测结果证明了该方法的有效性。 Sentiment analysis of Chinese Micro-blog usually refers to classification of Micro-blogs into positive,nega-tive and neutral polarity.According to the characteristics of Micro-blogs,such as fragmentation and imbalanced of sen-timent class,on the basis of reserved self-training method we presented before,text features were extracted that are appropriate for the sentiment analysis of Micro-blog,and then a training degree threshold setup method was proposed to optimize the iteration termination condition of reserved self-training method.These methods not only take advantage of the effective treatment on imbalanced distribution problem but also prevent the overtraining problem in training process. The evaluation result in COAE2014 showed the effectiveness of these methods.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2014年第11期37-42,共6页 Journal of Shandong University(Natural Science)
关键词 情感分析 训练度阈值 reserved self-training sentiment analysis reserved self-training training degree threshold
  • 相关文献

参考文献13

  • 1王远怀,于洪彦,李响.网络评论如何影响网络购物意愿?[J].中大管理研究,2013,8(2):1-19. 被引量:7
  • 2PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? sentiment classification using machine learning techniques[C]// Proceedings of the 2002 Conference on Empirical Methods In Natural Language Processing. Somerset: ACL, 2002: 79-86.
  • 3LIU Z, DONG X, GUAN Y, et al. Reserved self-training: a semi-supervised sentiment classification method for Chinese Micro-blogs[C]// Proceedings of IJCNLP. Somerset: ACL, 2013: 455-462.
  • 4BAKLIWAL A, FOSTER J, VAN DER PUIL J, et al. Sentiment analysis of political tweets: towards an accurate classifier[C]// Proceedings of NAACL Workshop on Language Analysis in Social Media. Atlanta, GA, 2013: 49-58.
  • 5BARBOSA L, FENG J. Robust sentiment detection on Twitter from biased and noisy data[C]// Proceedings of the 23rd International Conference on Computational Linguistics. Philadelphia, PA, USA: Association for Computational Linguistics, 2010: 36-44.
  • 6RUSTAMOY S, CLEMENTS M A. Sentence-level subjectivity detection using neuro-fuzzy models[C]// Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis.Atlanta: Association for Computational Linguistics, 2013: 108-114.
  • 7BOLLEN J, PEPE A, MAO Huina. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena[C]// Proceedings of ICWSM.[S.l.]: AAAI Press, 2011: 450-453.
  • 8MEENA A, PRABHAKAR T. Sentence level sentiment analysis in the presence of conjuncts using linguistic analysis[M]. Berlin Heidelberg: Springer, 2007: 573-580.
  • 9SOCHER R, PENNINGTON J, HUANG E, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Philadelphia, PA, USA: Association for Computational Linguistics, 2011: 151-161.
  • 10TAN C, LEE L, TANG J, et al. User-level sentiment analysis incorporating social networks[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2011: 1397-1405.

二级参考文献11

  • 1Petty,Richard E,Cacioppo John T.The effects of involvement on responses to argument quantity and quality: Central and peripheral routes to persuasion[].Journal of Personality.1984
  • 2Bailey, J.E,Pearson, S.W.Development of a tool for measuring and analyzing computer user satisfaction[].Management Science.1983
  • 3Bansal,H.S,Voyer,P.A.Word-of-Mouth Process Within a Services Purchase Decision Context[].Journal of service Research.2000
  • 4Bickart, B,Schindler,R.M."Internet Forums as InfluentialSources ofConsumer Information,"[].Journal of Interactive Marketing.2001
  • 5Chatterjee,P.Online reviews: Do consumers use them?[].Advances in Consciousness Research.2001
  • 6PARK D H,KIM S.The Effects of Consumer Knowledge on Message Processing of Electronic Word of Mouth via OnlineConsumer Reviews[].Electronic Commerce Research and Applications.2008
  • 7Park, D. H,Lee, J,Han, I."The Effect of on-Line Consumer Reviews onConsumer Purchasing Intention:The Moderating Role of Involvement,"[].International Journal of Electronic Commerce.2007
  • 8McLure Wasko,Molly,Faraj,Samer.Why Should I Share?Examining SocialCapital and Knowledge Contribution inElectronic Networks of Practice[].MIS Quarterly.2005
  • 9Chen,P,S.Dhanasobhon,et al.An Analysis of the Differential Impact ofReviews and Reviewers at Amazon.com[].Proceedings of theth International Conference onInformation Systems.2007
  • 10Chevalier,J.A,D.Mayzlin.The Effect of Word of Mouth on Sales:Online BookReviews[].NBER Working Paper Series.2003

共引文献6

同被引文献57

  • 1韦振中,黄廷磊.基于支持向量机和遗传算法的特征选择[J].广西工学院学报,2006,17(2):18-21. 被引量:12
  • 2孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1105
  • 3HOBFOLL S E. Social and Psychological Resources and Adaptation [J]. Review of General Psychology, 2002(4): 307-324.
  • 4MOHAMED M Mostafa. More than Words: Social Networks~ Text Mining for Consumer Brand Sentiments[J]. Expert Systems with Applications, 2013,40(10) : 4241-4251.
  • 5BENGIO Y,DELALLEAU O. On the Expressive Power of Deep Architectures [C]. Proc.of the 22nd Intemational Conference on Algorithmic Learning Theory, 2011:18-36.
  • 6Kontopoulos E, Berberidis C, Dergiades T, et al. Ontology- based sentiment analysis of twitter posts [ J ]. Expert Systems with Applications ,2013,40 ( 10 ) :4065-4074.
  • 7Luong Minh-Thang, Socher R, Manning C D. Better word rep- resentations with recursive neural networks for morphology [ C ]//Proceedings of the conference on computational naturallanguage learning. Sofia,Bulgarla: [s. n. ] ,2013.
  • 8Chrupala G. Text segmentation with character-level text era- beddings[ C]//Proceedings of the ICML workshop on deep learning for audio, speech and language processing. [ s. 1. ] : [ s. n. ] ,2013.
  • 9Socher R, Huval B, Manning C D, et al. Semantic composition- ality through reeursive matrix - vector spaces [ C ]//Proceed- ings of the conference on empirical methods in natural lan- guage processing. [ s. 1. ] : [ s. n. ] ,2012 : 1201-1211.
  • 10徐琳宏,林鸿飞,潘宇,任惠,陈建美.情感词汇本体的构造[J].情报学报,2008,27(2):180-185. 被引量:432

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部