期刊文献+

基于改进鲸鱼算法的微网复合储能系统容量优化配置 被引量:35

Capacity configuration of micro-grid composite energy storage system based on improved whale optimization algorithm
在线阅读 下载PDF
导出
摘要 针对微电网中分布式电源存在的随机性与间歇性等特征,提出了一种微网复合储能容量优化配置的方法,以保证微电网经济可靠运行。该方法以复合储能系统全寿命周期成本最低、平滑可再生能源功率波动效果最好以及微网联络线利用率最高为目标,建立复合储能容量优化配置模型。在此模型的基础上,采用文章改进的差分进化鲸鱼算法求解得到复合储能系统容量最优配置。最后,通过算例将改进的算法结果与基本的鲸鱼算法、粒子群算法进行对比,验证了差分进化鲸鱼算法可以更合理地配置复合储能容量,使风光功率波动得到更有效的平抑,同时微网联络线利用率也得到了提高,实现了资源的合理利用。 Aiming at the random and intermittent characteristics of the distributed power supply in the micro-grid,a method to optimize the configuration of the composite energy storage capacity is proposed to ensure its economical and reliable operation.Firstly,an optimization configuration model of composite energy storage capacity is established to take a multi-objective function with the lowest life cycle cost of the composite energy storage system,the best smooth power of renewable energy,the highest utilization of the micro-net connection line,and the highest reliability of power supply.Secondly,on the basis of this model,a modified whale optimization algorithm was used to obtain the optimal configuration of the composite energy storage,and compared with the basic whale algorithm and the particle swarm algorithm.Finally,the results of this paper are compared with the basic whale algorithm and particle swarm algorithm by an example.Verification of differential evolution whale algorithm can more rationally configure composite energy storage capacity.It allows the wind power fluctuations to be more effectively suppressed.Meanwhile,the utilization ratio of the micro-network connection line has also been improved,and the rational use of resources has been realized.
作者 李玲玲 王鑫 郎永波 贾立凯 王昕 Li Lingling;Wang Xin;Lang Yongbo;Jia Likai;Wang Xin(School of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200090,China;Yanbian Power Supply Company,State Grid Jilin Electric Power Co.,Ltd.,Yanbian 133001,Jilin,China;Center of Electrical & Electronic Technology,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《电测与仪表》 北大核心 2019年第16期104-110,共7页 Electrical Measurement & Instrumentation
基金 国家自然科学基金资助项目(61673268)
关键词 复合储能 容量配置 多目标优化 差分进化鲸鱼优化算法 composite energy storage capacity allocation multi-objective optimization the differential evolution whale optimization algorithm
  • 相关文献

参考文献7

二级参考文献91

  • 1孙耀杰,康龙云,史维祥,曹秉刚,杨仲庆.分布式电源中最佳蓄电池容量的机会约束规划[J].系统仿真学报,2005,17(1):41-44. 被引量:20
  • 2王凌,吴昊,唐芳,郑大钟,金以慧.混合量子遗传算法及其性能分析[J].控制与决策,2005,20(2):156-160. 被引量:45
  • 3杨俊安,庄镇泉.量子遗传算法研究现状[J].计算机科学,2003,30(11):13-15. 被引量:53
  • 4王海超,鲁宗相,周双喜.风电场发电容量可信度研究[J].中国电机工程学报,2005,25(10):103-106. 被引量:135
  • 5MORALS H, KADAR P, FARIA P, et al. Optimal scheduling of a renewable mierogrid in an isolated load area using mixed- integer linear programming [J]. Renewable Energy, 2010, 35(1): 151 156.
  • 6GUAN Xiaohong, XU Zhanbo, J1A Qingshan. Energy-efficient buildings facilitated by microgrid[J]. IEEE Trans on Smart Grid, 2010, 1(3) 243-252.
  • 7ROSS M, HIDALGO R, ABBEY C, et al. Energy storage system scheduling for an isolated mierogrid[J]. IET Renewable Power Generation, 2011, 5(2): 117 123.
  • 8CHEN C, DUAN S, CAI T, et al. Smart energy management system for Optimal microgrid economic operation [J]. lET Renewable Power Generation, 2011, 5(3) :258-267.
  • 9KATSIGIANNIS Y A, GEORGILAKIS P S, KARAPIDAKIS E S. Multiobjective genetic algorithm solution to the optimum economic and en'ironmental performance problem of small autonomous hybrid power systems with renewables [J]. lET Renewable Power Generation, 2010, 4(5): 404-419.
  • 10ALARCON-RODRIGUEZ A, HAESEN E, AULT G, et al. Multi-objective planning framework for stochastic and controllable distributed energy resourees[J]. IET Renewable Power Generation, 2009, 3(2): 227-238.

共引文献422

同被引文献503

引证文献35

二级引证文献265

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部