期刊文献+

改进局部均值分解的齿轮箱复合故障特征提取 被引量:5

Compound Fault Feature Extraction of Gearbox with Improved Local Mean Decomposition
在线阅读 下载PDF
导出
摘要 在强噪声环境下,针对局部均值分解(Local Mean Decomposition,LMD)出现的模态混叠现象,提出了总体局部均值分解方法(Ensemble Local Mean Decomposition,ELMD),但ELMD中所添加的白噪声不能完全被中和,这会导致PF分量受到所加白噪声的影响,导致重构误差增大。因此,提出基于PE-CELMD(Permutation Entropy-Complementary Ensemble Local Mean Decomposition)的齿轮箱复合故障诊断方法,该思路是在ELMD的基础上通过添加成对白噪声再结合排列熵(PermutationEntropy,PE)的方法优化LMD。将该方法应用于仿真信号和实测信号,并通过与LMD、CELMD对比,结果表明,PE-CELMD方法是一种有效的复合故障特征提取方法。 In the case of strong noise, Ensemble local mean decomposition(ELMD) is proposed for themodal aliasing phenomenon of local mean decomposition(LMD). However, the white noise added in ELMD can-not be completely neutralized, which will result in the reconstruction error increases due to the Product functions(PF)components to be affected by the added white noise. Therefore, a compound fault feature extraction methodfor gearbox based on PE-CELMD(Permutation Entropy-Complementary Ensemble local mean decomposition) isproposed. The idea is to optimize ELMD by adding pairwise white noise in combination with Permutation Entro-py(PE) method based on ELMD. The method is applied to the simulated signal and the measured signal, andcompared with LMD and CELMD, the results show that the PE-CELMD method is an effective compound faultfeature extraction method.
作者 柴慧理 叶美桃 Chai Huili;Ye Meitao(Department of Vehicle Engineering,Shanxi Traffic Vocational And Technical College,Taiyuan 030031,China)
出处 《机械传动》 北大核心 2019年第8期130-134,共5页 Journal of Mechanical Transmission
基金 国家自然科学基金(59975064) 山西省基础研究项目(2015011063)
关键词 局部均值分解 排列熵 复合故障 Local mean decomposition Permutation entropy Compound fault
  • 相关文献

参考文献2

二级参考文献29

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform[J]. Mechanical Systems and Signal Processing, 2003, 17 (4): 787-804.
  • 3Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform. Mechanical Systems and Signal Processing[J]. 2002, 16(2-3): 447-457.
  • 4Cohen L. Time-frequency distribution-a review [J]. Proceedings of the IEEE, 1989, 77(7): 941-981.
  • 5Classen T, Mecklenbrauker W. The aliasing problem in diserete-time Wigner distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31(5): 1 067-1 072.
  • 6Lee Joon-Hyun, Kim J, Kim Han-Jun. Development of enhanced Wigner-Ville distribution function [J]. Mechanical Systems and Signal Processing, 2001, 13 (2) : 367-398.
  • 7Mallat S. A theory for multi-resolution decomposition, the wavelet representation[J]. IEEE Trans. P. A. M. I., 1989, 11(7):674-689.
  • 8Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond. A, 1998, 454: 903-995.
  • 9Huang N E, Shen Z, Long SR. A new view of nonlinear water waves: the Hitbert spectrum[J]. Annu. Rev. Fluid Mech. , 1999, 31: 417-457.
  • 10Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilber t spectrum method to identify near-fault ground-motion characteristics and structural response[J]. Bulletin of the Seismological Society of American, 2001, 91 (5): 1 339-1 357.

共引文献127

同被引文献88

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部