期刊文献+

基于噪声辅助分析的总体局部均值分解方法 被引量:35

Ensemble Local Mean Decomposition Method Based on Noise-assisted Analysis
在线阅读 下载PDF
导出
摘要 局部均值分解(Local mean decomposition,LMD)方法是一种新的自适应时频分析方法,但在其实现过程中会发生模态混淆现象,使分析结果失真。通过数值试验得到了LMD对白噪声的滤波器组结构,并在此基础上,针对模态混淆现象提出总体局部均值分解(Ensemble local mean decomposition,ELMD)方法。在该方法中添加不同的白噪声到目标信号,分别对加噪后的信号进行LMD分解,最后将多次分解结果的平均值作为最终的分解结果。对仿真信号和试验转子局部碰摩信号进行分析,结果表明ELMD方法能有效地克服原LMD方法的模态混淆现象。 The local mean decomposition(LMD) is a newly self-adaptive time-frequency analysis method.Mode mixing phenomenon which makes the decomposition results distortion may be produced when LMD is performed.The filter bank structure of LMD in white noise is obtained by numerical experiments,and based on this,the ensemble local mean decomposition method(ELMD) is proposed to overcome the shortcomings of mode mixing.In ELMD,different white noise is added to the targeted signal.The noise-added signal is decomposed by using LMD.Several decomposed results is severed as the final decomposition result.The analytical results from simulated signal and experimental rotor local rub-impact signal demonstrate that the ELMD method can be used to improve the mode mixing of the original LMD method effectively.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第3期55-62,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(50775068) 国家高技术研究发展计划(863计划 2009AA04Z414) 湖南大学汽车车身先进设计制造国家重点实验室自主课题(60870002)资助项目
关键词 局部均值分解 模态混淆 白噪声 滤波器组 总体局部均值分解 Local mean decomposition Mode mixing White noise Filter bank Ensemble local mean decomposition
  • 相关文献

参考文献11

  • 1JONATHAN S S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
  • 2BOASHASH B.Estimating and interpreting the instantaneous frequency of a signal-part 1:Fundamentals[J].Proc.IEEE,1992,80(4):520-538.
  • 3程军圣,杨宇,于德介.局部均值分解方法及其在齿轮故障诊断中的应用[J].振动工程学报,2009,22(1):76-84. 被引量:96
  • 4HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc.R.Soc.Lond.A,1998,454:903-995.
  • 5WU Zhaohua,HUANG N E.Ensemble empirical mode decomposition:A noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
  • 6FLANDRIN P,GONCALVES P,RILLING G.EMD equivalent filter banks,from interpretation to applications[M].HUANG N E,SHEN S S P,HILBERT Huang transform and its applications.Singapore:World Scientific,2005.
  • 7GLEDHILL R J.Methods for investigating conformational change in biomolecular simulations[D].Southampton:University of Southampton,2003.
  • 8ABRY P,FLANDRIN P,TAQQU M,et al.Wavelets for the analysis,estimation,and synthesis of scaling data[M] // KIHONG P,WALTER W.Self-similar network traffic and performance evaluation.New York:John Wiley & Sons,2000.
  • 9FLANDRIN P,RILLING G,GONCALVES P.Empirical mode decomposition as a filter bank[J].IEEE Signal Processing Letters,2004,11(2):112-114.
  • 10RILLING G,FLANDRIN P,GONCALVES P.Empirical mode decomposition,fractional gaussian noise and hurst exponent estimation[C] // ICASSP 2005-2005 IEEE International Conference on Acoustics,Speech,and Signal Processing,March 19-23,2005,Philadelphia,Pennsylvania.IEEE,2005:489-492.

二级参考文献18

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform[J]. Mechanical Systems and Signal Processing, 2003, 17 (4): 787-804.
  • 3Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform. Mechanical Systems and Signal Processing[J]. 2002, 16(2-3): 447-457.
  • 4Cohen L. Time-frequency distribution-a review [J]. Proceedings of the IEEE, 1989, 77(7): 941-981.
  • 5Classen T, Mecklenbrauker W. The aliasing problem in diserete-time Wigner distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31(5): 1 067-1 072.
  • 6Lee Joon-Hyun, Kim J, Kim Han-Jun. Development of enhanced Wigner-Ville distribution function [J]. Mechanical Systems and Signal Processing, 2001, 13 (2) : 367-398.
  • 7Mallat S. A theory for multi-resolution decomposition, the wavelet representation[J]. IEEE Trans. P. A. M. I., 1989, 11(7):674-689.
  • 8Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond. A, 1998, 454: 903-995.
  • 9Huang N E, Shen Z, Long SR. A new view of nonlinear water waves: the Hitbert spectrum[J]. Annu. Rev. Fluid Mech. , 1999, 31: 417-457.
  • 10Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilber t spectrum method to identify near-fault ground-motion characteristics and structural response[J]. Bulletin of the Seismological Society of American, 2001, 91 (5): 1 339-1 357.

共引文献95

同被引文献345

引证文献35

二级引证文献321

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部