期刊文献+

基于CNN/LSTM和稀疏下采样的人体行为识别 被引量:10

Human action recognition based on CNN/LSTM and sparse down-sampling
在线阅读 下载PDF
导出
摘要 针对人体行为识别提出一种基于深度学习的方法,使用CNN和LSTM以及MLP来构建的模型。用CNN提取视频的空间信息,LSTM提取视频的时间信息,使用MLP实现最后的分类,为提高训练速度,对视频剪辑进行稀疏下采样预处理。该模型在UCF-101数据集上达到了令人满意的效果,在与该领域中的同类算法比较中表现优异。 A deep learning-based method for the human action recognition was proposed,CNN,LSTM and MLP were used to construct the model.The CNN and LSTM were used to extract spatial and temporal information of videos respectively.MLP was used to achieve the final classification.The video clips were preprocessed by sparse down-sampling to improve the training speed.The model achieves satisfactory results on the UCF-101 data set and performs well in comparison with similar algorithms in the field.
作者 陈煜平 邱卫根 CHEN Yu-ping;QIU Wei-gen(School of Computers,Guangdong University of Technology,Guangzhou 510006,China)
出处 《计算机工程与设计》 北大核心 2019年第5期1445-1450,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61572142) 广东省科技计划基金项目(14ZK0180)
关键词 人体行为识别 卷积神经网络 长短期记忆网络 多层感知器 稀疏下采样 human action recognition CNN LSTM MLP sparse down-sampling
  • 相关文献

参考文献2

二级参考文献136

  • 1Mokhber A,Achard C,Milgram M. Recognition of Human Behavior by Space-Time Silhouette Characterization[J].Pattern Recognition Let-ters,2008,(01):81-89.
  • 2Polat E,Yeasin M,Sharma R. Robust Tracking of Human Body Parts for Collaborative Human Computer Interaction[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2003,(01):44-69.
  • 3Kjellstr?m H,Romero J,Kragic' D. Visual Object-Action Recogni-tion:Inferring Object Affordances from Human Demonstration[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2011,(01):81-90.
  • 4Suma E A,Krum D M,Lange B. Adapting User Interfaces for Gestural Interaction with the Flexible Action and Articulated Skele-ton Toolkit[J].Computers& Graphics,2012,(03):193-201.
  • 5Ayers D,Shah M. Monitoring Human Behavior from Video Taken in an Office Environment[J].{H}IMAGE AND VISION COMPUTING,2001,(12):833-846.
  • 6López M T,Fernández-Caballero A,Fernández M A. Visual Surveillance by Dynamic Visual Attention Method[J].Pattern Recogni-tion,2006,(11):2194-2211.
  • 7Aggarwal J K,Park S. Human Motion:Modeling and Recognition of Actions and Interactions[A].Thessaloniki,Greece,2004.640-647.
  • 8Moeslund T B,Hilton A,Krüger V. A Survey of Advances in Vision-Based Human Motion Capture and Analysis[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2006,(2/3):90-126.
  • 9Poppe R. A Survey on Vision-Based Human Action Recognition[J].{H}IMAGE AND VISION COMPUTING,2010,(06):976-990.
  • 10Weinland D,Ronfard R,Boyer E. A Survey of Vision-Based Meth-ods for Action Representation,Segmentation and Recognition[J].Com-puter Vision and Image Understanding,2011,(02):224-241.

共引文献130

同被引文献86

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部