期刊文献+

基于WGAN网络的自然视频预测 被引量:1

Natural Video Prediction Based on WGAN Network
原文传递
导出
摘要 计算机视觉技术已经在学术界和工业界取得了巨大的成果,近年来,视频预测已经成为一个重要的研究领域。现有基于生成对抗网络的视频预测模型在训练中需要小心平衡生成器和判别器的训练,生成模型多样性不足。针对这些问题,提出用Wasserstein对抗生成网络(WGAN)代替生成对抗网络,采用拉普拉斯金字塔模型的级联卷积网络训练一个多尺度的卷积网络,根据输入视频序列预测未来几帧,再由低分辨率到高分辨率的迭代去生成比较清晰的图像。最后在UCF-101数据集上进行了实验,并与不同的网络结构进行了比较,实验结果表明,改进的网络在数据集的实验结果优于现有的视频生成模型。 The computer vision technology has already been successfully applied in both academia and industry. In recent years, natural video prediction has become a prominent area of deep learning research. The existing video prediction models based on generating confrontation networks need maintaining a careful balance in training of the discriminator and generator, and the mode dropping phenomenon is also drastically reduced. To solve above mentioned problems, this paper adopts the Wasserstein Generation Adversarial Network ( WGAN) instead of generating the confrontation network. A cascaded convolution network using the Laplacian pyramid model is used to train a multi-scale convolution network to predict the next few frames according to the input video sequence. The clearer image can be iteratively generated from low resolution to high resolution. Finally, experiments are carried out on the UCF-101 dataset and compared with different network structures. The experimental results show that the improved network surpasses the existing video generation model in the dataset.
作者 李敏 仝明磊 范绿源 南昊 LI Min;TONG Ming-lei;FAN Lv-yuan;NAN Hao(School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
出处 《仪表技术》 2019年第4期1-5,共5页 Instrumentation Technology
基金 上海市自然科学基金资助项目(16ZR1413300)
关键词 视频预测 Wasserstein对抗生成网络 多尺度 拉普拉斯金字塔模型 video prediction Wasserstein generative adversarial networks ( WGAN) multi-scale Laplacian pyramid
  • 相关文献

参考文献3

二级参考文献7

共引文献18

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部