期刊文献+

纳米TiO_2颗粒在声场导向管喷动流化床中的流化特性 被引量:6

Fluidization Characteristics of TiO_2 Nanoparticles in an Acoustic Spouted-Fluidized Bed with a Draft Tube
在线阅读 下载PDF
导出
摘要 在内径120 mm的半圆柱型声场导向管喷动流化床中,以平均粒径290 nm的TiO_2颗粒为原料,高速空气射流为喷动气,考察了操作条件、声参数(频率和声压)对纳米颗粒在声场导向管喷流床中的流态化特性的影响。结果表明:声波可以有效抑制沟流,改善环隙流化质量,防止射流旁路,从而促使粉体稳定循环,加快循环速率;同时声波可以显著地降低纳米TiO_2颗粒的最小喷动速度,声波频率一定时,最小喷动速度随声压的增加而减小;声压一定时,最小喷动速度在声波频率为80 Hz时达到最小值,低于或者高于80 Hz,最小喷动速度都会增大。 An experiment was conducted to investigate the effects of operating conditions, acousticparameters(frequency and sound pressure) on nanoparticle fluidization behaviors in an acoustic spoutedfluidized bed with a draft tube. An half-cylindrical column with a diameter of 120 mm and height of 1 200 mmwas used as the column, TiO2 nanoparticles with an average diameter of 290 nm was used as raw materialswhile the high-speed atmosphere jet was used as the spouting gas. It was found that the sonic couldeffectively inhibit the channelings and improved the quality of the annulus to prevent bypass of thehigh-speed atmosphere jet, thus contributing to a stable powder circulation and speed up the circulation ratebetween annulus and the draft tube. Furthermore, the minimum spouting velocity of the nano-TiO2 particleswas significantly reduced by introducing the sound wave. At a constant frequency, the minimum spoutingvelocity decreased as the sound pressure level increased. On the other hand, when the sound pressure levelwas fixed, the minimum spouting velocity was achieved with a critical frequency at 80 Hz, the frequencybelow or above 80 Hz resulted in higher velocity.
作者 皮立强 高凯歌 杨兴灿 周勇 Pi Liqiang;Gao Kaige;Yang Xingcan;Zhou Yong(Chemical Engineering Institute, Sichuan University, Chengdu 610065, China)
出处 《化学反应工程与工艺》 CAS CSCD 北大核心 2016年第2期114-119,共6页 Chemical Reaction Engineering and Technology
基金 国家自然科学基金(21376151)
关键词 纳米颗粒 流态化 最小喷动速度 导向管喷动流化床 高速空气射流 声波 nanoparticles fluidization minimum spouting velocity spouted-fluidized bed with draft tube high-speed atmosphere jet sound wave
  • 相关文献

参考文献12

  • 1李勇,申文杰.多元醇法合成形貌可控的钴镍纳米材料[J].化学反应工程与工艺,2013,29(5):401-412. 被引量:3
  • 2Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292.
  • 3Ajbar A, Bakhbakhi Y, Ali S, et al. Fluidization of nano-powders: effect of sound vibration and pre-mixing with group a particles[J].Powder Technology, 2011, 206(3): 327-337.
  • 4Mawatari Y, Ikegami T, Tatemoto Y, et al. Prediction of agglomerate size for fine particles in a vibro-fluidized bed[J]. Journal of Chemical Engineering of Japan, 2003, 36(3): 277-283.
  • 5Taketomi S, Takahashi H, Inaba N, et al. Experimental and theoretical investigations on agglomeration of magnetic colloidal particles inmagnetic fluids[J]. Journal of the Physical Society of Japan, 1991, 60(5): 1689-1707.
  • 6Guo Q, Wang M, Li Y, et al. Fluidization of ultrafine particles in a bubbling fluidized bed with sound assistance[J]. ChemicalEngineering & Technology, 2005, 28(10): 1117-1124.
  • 7Morse R D. Sonic energy in granular solid fluidization[J]. Industrial & Engineering Chemistry, 1955, 47(6): 1170-1175.
  • 8梁华琼,周勇,李爱蓉,段蜀波.超细颗粒在声场流化床中的流化特性[J].高校化学工程学报,2004,18(5):579-584. 被引量:15
  • 9段蜀波,梁华琼,王亮,周勇,朱家骅.纳米TiO_2颗粒在声场流化床中的流化特性[J].化学反应工程与工艺,2005,21(1):6-11. 被引量:10
  • 10马兰. 超细粉在导向管喷动床中的流化行为[D]. 成都: 四川大学, 2001.

二级参考文献99

  • 1陈建平,汪展文,金涌,俞芷菁.细颗粒振动流态化行为的二维床观察[J].高校化学工程学报,1996,10(1):41-44. 被引量:7
  • 2朱庆山,李洪钟.C类物料磁场流态化(Ⅱ)──实验研究[J].化工学报,1996,47(1):59-64. 被引量:5
  • 3Geldart D. Types of Gas Fluidization. Powder Technology, 1973,7:285~292
  • 4Chaouki J, Chavarie C, Klvana D, et al. Effect of Interparticle Forces on the Hydrodynamic Behavior of Fluidized Aerogels. Pow der Technology, 1985, 43:117~125
  • 5Geldart D, Harnby N, Wong A C. Fluidization of Cohesive Powders. Powder Technology,1984, 37:25~37
  • 6Morooka S, Kusakabe K, Kobata A, et al. Fluidization State of Ultrafine Powders. J Chem Eng Japan, 1988, 21(1): 41~46
  • 7Chirone R, Massimilla L. 24th Int Symp on Combustion. Sydney, 1992. 1323
  • 8Chirone R, Massimilla L. Bubbling Fluidization of a Cohesive Powder in an Acoustic Field. In Fluidization Ⅶ. New York:Engineering Foundation, 1992, 545
  • 9Chirone R, Massimilla L, Russo S. Bubble-Free Fluidization of a Cohesive Powder in an Acoustic Field. Chemical Engineering Science, 1993, 48(1): 41~52
  • 10Geldart D. Types of gas fluidization [J]. Powder Technology, 1973, 7: 285-292.

共引文献24

同被引文献41

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部