期刊文献+

基于半监督学习的微博情感分析 被引量:4

Sentiment Analysis of Chinese Micro-blog Based on Semi-Supervised
在线阅读 下载PDF
导出
摘要 微博情感分析指利用微博文本进行情感的自动分类。在对大规模的中文微博短文本进行分类时,存在着耗时长和一致性差等问题。针对以上问题,论文采用基于多分类器集成的self-training的半监督情感分类方法。在小规模的情感标注样本的基础上,使用多个分类器参与分类预测,通过设置子分类器的情感贡献权重来得到分类的情感置信度,选出置信度高的样本来扩大训练集,更新训练模型,从而提高情感分类的效率和准确性。并于传统的半监督情感分析方法进行比较,实验证明,论文算法具有更高的效率和准确性。 Chinese Micro-blog sentiment analysis refers to use Micro-blog text for emotional automaticclassification. In the large-scale Chinese micro-blog short text classification,there is a time consuming and poor consistency problem. In order to solve above problems,this paper uses semi-supervised emotion classification based on multiple classifier integration on self-training to classify. On the basis of emotion marked sample on a small scale,multiple classifiersin classification prediction is used. The confidence of classification by setting the weight contribution of the subclassifier. High confidence level samples are chosen to expand the training set,update training model,so as to improve the efficiency and accuracy of sentiment classification. In this paper,compared with traditional semi-supervised emotional analysis method,the experiments show that this algorithm has higher efficiency and accuracy.
作者 陈珂 黎树俊 谢博 CHEN Ke;LI Shujun;XIE Bo(Department of Computer Science and Technology,Guangdong University of Petrochemical Technology,Maoming 52500)
出处 《计算机与数字工程》 2018年第9期1850-1855,共6页 Computer & Digital Engineering
基金 广东省自然科学基金项目(编号:2016A030307049) 大学生创新创业训练项目(编号:201611656002 201611656029 2016py A033)资助
关键词 情感分析 半监督学习 分类器集成 sentiment analysis senti-supervised learning classifier integration
  • 相关文献

参考文献3

二级参考文献39

  • 1杨频,李涛,赵奎.一种网络舆情的定量分析方法[J].计算机应用研究,2009,26(3):1066-1068. 被引量:19
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:329
  • 3赵军,许洪波,黄萱菁,谭松波,刘康,张奇.中文倾向性分析评测技术报告[C]//第一届中文倾向性分析评测会议(The First Chinese Opinion Analysis Evaluation).COAE,2008.
  • 4Franco Salvetti, Stephen Lewis, Christoph Reichenbach. Automatic Opinion Polarity Classification of Movie Reviews[J]. Colorado Research in Linguistics, 2004, Volume 17, Issue 1.
  • 5Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 79 86.
  • 6Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Genre classification and domain transfer for information filtering[A]. In: Fabio Crestani, Mark Girolami, and Cornelis J. van Rijsbergen, editors, Proceedings of ECIR-02, 24th European Colloquium on Information Retrieval Research, Glasgow, UK. Springer Verlag, Heidelberg, DE.
  • 7Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and Theresa Wilson. A corpus study of evaluative and speculative language[A]. In: Proceedings of the 2nd ACL SIGdial Workshop on Discourse and Dialogue, 2001.
  • 8Alina Andreevskaia and Sabine Bergler. Mining Word-Net For a Fuzzy Sentiment: Sentiment Tag Extraction From WordNet Glosses[A].In: Proc. EACL-06, Trento, Italy, 2006.
  • 9Alistair Kennedy and Diana Inkpen. Sentiment Classification of Movie Reviews Using Contextual Valence Shifters[J]. Computational Intelligence, 2006,22 (2) 110-125.
  • 10P.D. Turney and M.L. Littman. Unsupervised learning of semantic orientation from a hundred-billion-word corpus[D]. Technical Report ERB-1094, National Research Council Canada, Institute for Information Technology, 2002.

共引文献147

同被引文献23

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部