期刊文献+

基于Stixel-world及特征融合的双目立体视觉行人检测 被引量:6

Stereo visual pedestrian detection based on Stixel-world and feature fusion
在线阅读 下载PDF
导出
摘要 针对单目视觉行人检测无法获得深度信息从而导致冗余信息较多、检测效率和准确度存在局限性的问题,首先,在图像的预处理阶段提出了一种利用双目立体视觉产生的视差信息优化分析来简化复杂场景的动态规划棒状像素场景(stixel-world)表达方式;然后,在行人目标检测阶段,对传统HOG特征中block尺度进行分析、降维,采用Fisher准则筛选得到了适用于道路环境下的多尺度HOG(multi-HOG)特征,将Multi-HOG特征与LUV颜色通道特征进行融合,最后采用交叉核支持向量机(hikSVM)分类器对行人目标分类。实验结果表明,采用改进过后的Stixel-world算法用于图像预处理极大地减少了计算时间。缩小了行人检测的候选区域,基于特征融合和hik-SVM的目标检测算法在保证检测准确度的前提下,具有较好的实时性和鲁棒性。 The monocular vision pedestrian detection can not obtain the depth information, so detection efficiency and accuracy are limited. Firstly, in the image pre-processing, the disparity information optimization analysis is proposed to simplify the expression of dynamic programming stixel-world in complex scenes based on stereo vision. Then, at the stage of pedestrian target detection, this paper analyzes the influence of the block scale on the detection effect in the traditional HOG feature, and obtains the multi-HOG feature which is suitable for the road environment using the fisher criterion. The multi-HOG feature is integrated with the LUV color channel feature. Finally, the hik-SVM is used for pedestrian target classification. The experimental results show that the improved Stixel-world algorithm for image preprocessing greatly reduces the computation time and reduces the candidate region of pedestrian detection, target detection algorithm based on feature fusion and hik-SVM has good real-time and robustness under the premise of guaranteeing the detection accuracy.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第11期2822-2829,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51475153) 深圳市科技计划(JCYJ20160530193357681)项目资助
关键词 行人检测 双目立体视觉 Stixel—world 特征融合 交叉核支持向量机 pedestrian detection stereo vision Stixel-world feature fusion hik-support vector machine (hik-SVM)
  • 相关文献

参考文献11

二级参考文献107

  • 1李曦,曹广益,付晓薇,朱新坚.基于实时图像序列的行人跟踪计数方法[J].计算机仿真,2005,22(2):79-81. 被引量:7
  • 2郭磊,李克强,王建强,连小珉.一种基于特征的车辆检测方法[J].汽车工程,2006,28(11):1031-1035. 被引量:22
  • 3谢毅,黄席樾.基于机器视觉的车辆对称中心检测[J].重庆工学院学报,2007,21(7):8-11. 被引量:4
  • 4WREN C,AZARBAYEJANI A,DARRELL T,et al.Pfinder: real-time tracking of the human body [ J],IEEE Transactions on Pattern Analysis and MachineIntelligence,1997 ,19(7) : 780-785.
  • 5MA R H, LI L Y, HUANG W M, et al. On pixelcount based crowd density estimation for visualsurveillance [ C ]. Singapore: IEEE Conference onCybernetics and Intelligent Systems,2004: 170-173.
  • 6CHEN T H,CHEN T Y’CHEN Z X. An intelligentpeople-flow counting method for passing through agate[C]. Bangkok: IEEE Conference on Robotics,Automation and Mechatronics,2006 :1-6.
  • 7WANG X, WANG S. Collaborative signal processing for target tracking in distributed wireless sensor networks[J]. Journal of Parallel and Distributed Computing, 2007, 67(5) 501-515.
  • 8ZHENG S, XIE B, HUANG K, et al. Multi-view pede- strian recognition using shared dictionary learning with group sparsity [C]. Proceedings of the 18th International Conference on Neural Information Processing (ICONIP), 2011 : 629-638.
  • 9AKYILDIZ I F, MELODIA T, CHOWDHURY K R. A survey on wireless multimedia sensor networks [J]. Com- puter networks, 2007, 51 (4): 921-960.
  • 10YANG A Y, MAJI S, HONG K, et al. Distributed com-pression and fusion of nonnegative sparse signals for mul- tiple-view object recognition [C]. Information Fusion, 2009. FUSION'09. 12th International Conference on. IEEE, 2009: 1867-1874.

共引文献587

同被引文献51

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部