期刊文献+

基于KL距离的卷积神经网络人脸特征提取模型 被引量:1

Face feature extraction model of convolutional neural network based on KL divergence
在线阅读 下载PDF
导出
摘要 为了克服欧式距离的度量方法在人脸特征表达上的不足,提出了一种基于KL距离的卷积神经网络人脸特征提取模型。通过卷积神经网络将输入样本转换为一个概率分布,利用KL距离度量不同样本之间概率分布的差异,并定义了一个代价函数对此距离进行优化,最后使用反向传播算法修改卷积神经网络的参数,使网络对人脸特征有更强的区分能力。将提取的特征向量通过神经网络分类器进行人脸验证,在YouTube等人脸库上进行了测试。试验结果表明,该方法不仅能提高正确率,而且还具有更好的泛化性能。 In order to overcome the shortcomings of Euclidean distance measurement in face feature expression, a neural network face feature extraction model based on KL divergence is proposed. The convolution neural network is used to transform the input sample into a probability distribution. The distance between different samples is measured by the KL divergence, and a cost function is defined to optimize the distance. The back propagation algo- rithm is used to modify the parameters of convolution neural network, the network has a stronger ability to distinguish between facial features. The extracted face feature vector is transformed into neural network classifier to performs face validation with YouTube face database. The experimental results show that the method can not only improve the error rate but also improve the generalization performance.
作者 罗可 周安众
出处 《长沙理工大学学报(自然科学版)》 CAS 2017年第2期85-91,共7页 Journal of Changsha University of Science and Technology:Natural Science
基金 国家自然科学基金资助项目(11671125 71371065)
关键词 人脸识别 人脸验证 特征提取 KL距离 度量学习 卷积神经网络 face recognition face verification feature extraction KL divergence metric learning convolutional neural network
  • 相关文献

参考文献5

二级参考文献131

  • 1Duda R, Hart P. Pattern Classification and Scene Analysis. New York, USA: John Wiley & Sons, 1973
  • 2Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers. Machine Learning, 1997, 29(2/3) : 131 - 163
  • 3Greiner R, Su Xiaoyuan, Shen Bin, et al. Structural Extension to Logistic Regression : Discriminative Parameter Learning of Belief Net Classifiers. Machine Learning, 2005, 59(3): 297-322
  • 4Grossman D, Domingos P. Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood// Proc of the 21st International Conference on Machine Learning. Banff, Canada, 2004 : 361 - 368
  • 5Cooper G F, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 1992, 9 (4) : 309 - 347
  • 6Pemkopf F, Bilmes J. Discriminative versus Generative Parameter and Structure Learning of Bayesian Network Classifiers // Proc of the 22nd International Conference on Machine Learning. Bonn,Germany, 2005 : 657 - 664
  • 7Han J W, Kamber M. Data Mining: Concepts and Techniques. Seattle, USA: Morgan Kaufmann, 2001
  • 8Mitchell T M. Machine Learning. New York, USA: McGraw-Hill, 1997
  • 9Chow C K, Liu C N. Approximating Discrete Probability Distributions with Dependence Trees. IEEE Trans on Information Theory, 1968, 14(3) : 462 -467
  • 10Bilmes J A. Dynamic Bayesian Multinets// Proc of the 16th Conference on Uncertainty in Artificial Intelligence. Stanford, USA, 2000:38-45

共引文献73

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部