期刊文献+

基于贝叶斯网络分类器的车牌相似字符识别 被引量:4

Recognition of similar characters on license plate based on bayesian network classifiers
原文传递
导出
摘要 相似字符识别率低会影响整个车牌识别系统的性能,而相似字符之间只有局部特征差异较大,并且相似字符样本数目多少差异较大,目前常用的分类器表现得都不稳定.贝叶斯网络分类器充分利用和综合先验知识与样本信息,无论实验样本和特征数目多少,表现得都很稳定.通过使用几千个测试样本对分类器进行测试,并与其他分类器的识别结果作比较.实验结果表明,在相同的特征下,与AdaBoost分类器、BP神经网络分类器、SVM分类器相比,贝叶斯网络分类器对车牌相似字符的识别有较高的识别率和更高的稳定性. The low recognition rate of similar characters will affect the performance of the whole car plate recognition system, but similar characters differ from each other mostly in a local part, also the numbers of samples are different, so those classifiers used now have unstable performance. The Bayesian Net- work Classifier has stable performance by making full use of and combining prior knowledge with sample information no matter how many samples and features. Thousands of test samples are used to test Bayesian Network Classifier as well as other classifiers. The experiment result shows that, using the same features, the Bayesian Networks Classifier has a relatively high recognition rate and stable per- formance on similar character recognition compared with AdaBoost classifier, BP Neural network classi- fier and SVM classifier.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期775-780,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 车牌识别 相似字符 特征提取 贝叶斯网络分类器 license plate recognition similar character feature extraction bayesian network classifier
  • 相关文献

参考文献12

二级参考文献31

  • 1张兴会,杜升之,陈增强,袁著祉.基于神经网络的车牌照自动识别系统[J].仪器仪表学报,2001,22(z2):209-210. 被引量:13
  • 2王华,丁晓青.一种多字体印刷藏文字符的归一化方法[J].计算机应用研究,2004,21(6):41-43. 被引量:10
  • 3孙笑微,赵大宇,李晓毅,唐恒永.用于数据挖掘的TAN分类器的研究与应用[J].计算机技术与发展,2006,16(11):140-142. 被引量:5
  • 4Duda R, Hart P. Pattern Classification and Scene Analysis. New York, USA: John Wiley & Sons, 1973
  • 5Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers. Machine Learning, 1997, 29(2/3) : 131 - 163
  • 6Greiner R, Su Xiaoyuan, Shen Bin, et al. Structural Extension to Logistic Regression : Discriminative Parameter Learning of Belief Net Classifiers. Machine Learning, 2005, 59(3): 297-322
  • 7Grossman D, Domingos P. Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood// Proc of the 21st International Conference on Machine Learning. Banff, Canada, 2004 : 361 - 368
  • 8Cooper G F, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 1992, 9 (4) : 309 - 347
  • 9Pemkopf F, Bilmes J. Discriminative versus Generative Parameter and Structure Learning of Bayesian Network Classifiers // Proc of the 22nd International Conference on Machine Learning. Bonn,Germany, 2005 : 657 - 664
  • 10Han J W, Kamber M. Data Mining: Concepts and Techniques. Seattle, USA: Morgan Kaufmann, 2001

共引文献71

同被引文献27

  • 1Schantz H.The history of OCR[M].Manchester Center,VT:Recognition Technologies Users Association,1982.
  • 2Wachenfeld S,Klein H U,Jiang X Y.Recognition of screen-rendered text[J].Pattern Recognit,2006,2:1086.
  • 3Yu Z D.A fast image rotation algorithm for optical character recognition of Chinese Documents[J].Commun,Circ Sys Proc,2006,1:485.
  • 4Liu C L.Handwritten Chinese character recognition:effects of shape normalization and feature extraction[J].Arabic Chinese Handwriting Recognit,2008,4768:104.
  • 5Chen Q.Evaluation of OCR algorithms for images with different spatial resolutions and noises[M].Canada:University of Ottawa,2004.
  • 6Bai Z,Huo Q.A study on the use of 8-directional features for online handwritten Chinese character recognition[J].IEEE Comput Soc,2005,1:262.
  • 7Wu T,Qi K Y,Zheng Q,et al.An improved descriptor for Chinese character recognition[J].Intell Info Technol Appl,2009,2:400.
  • 8顾晨勤,葛万成.基于模板匹配算法的字符识别研究[J].通信技术,2009,42(3):220-222. 被引量:28
  • 9贾磊磊,陈锡华,熊川.验证码的模糊识别[J].西昌学院学报(自然科学版),2010,24(1):60-62. 被引量:6
  • 10吕刚,郝平.基于神经网络的数字验证码识别研究[J].浙江工业大学学报,2010,38(4):433-436. 被引量:17

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部