期刊文献+

基于自然语言处理的弱监督知识获取系统的实现 被引量:3

Implementation of weakly supervised learning knowledge acquisition system based on natural language processing
在线阅读 下载PDF
导出
摘要 知识获取多年来一直被认为是阻碍智能系统开发的瓶颈问题,尤其是互联网时代,大量的信息都以非结构化的文本形式存在。本文运用分布式计算思想设计了一个基于互联网大规模语料库的知识自动获取系统。采用弱监督条件下机器学习的方法对信息自动挖掘和获取,实现机器对知识的自动学习和挖掘、新词词典发现、实体关系模板提取、命名实体识别等功能。利用该系统分别对未登录新词发现和地名识别两种应用进行了实验,运用N-gram和互信息(PMI)方法分别取得了72.1%和87.28%的准确率。 Knowledge acquisition has been considered as a bottleneck problem in the development of intelligent systems for many years. Especially in the Internet era, a large number of information exists in the form of unstructured text. This paper introduces a knowledge acquisition system for a large Web page corpus based on distributed computing. This system is designed for automatic information mining and acquisition by the weakly supervised learning method. Comput- ers can realize the automatic learning and mining of knowledge, the discovery of new words dictionary, the extraction of entity relation template, the entity recognition and so on. We represent the N-gram model and pairwise mutual informa- tion methods for new words recognition and location name entity detection, and the experimental results show the preci- sion are 72. 1% and 87.28% respectively.
作者 田东 张西宁
出处 《国外电子测量技术》 2017年第3期60-63,共4页 Foreign Electronic Measurement Technology
关键词 自然语言处理 分布式计算 弱监督机器学习 知识获取 natural language processing distributed computing weekly supervised learning knowledge acquisition
  • 相关文献

参考文献6

二级参考文献78

  • 1张锋,许云,侯艳,樊孝忠.基于互信息的中文术语抽取系统[J].计算机应用研究,2005,22(5):72-73. 被引量:36
  • 2徐科军,李巧利,梅涛.机器人手爪的多传感器数据采集、融合和传输系统[J].仪器仪表学报,2005,26(5):486-491. 被引量:1
  • 3何婷婷,张勇.基于质子串分解的中文术语自动抽取[J].计算机工程,2006,32(23):188-190. 被引量:21
  • 4PAULO J L, CORREIA M, MAMEDE N J. et al. Using morpholog- ical, syntactical, and statistical information for automatic term ac- quisition [ C]//Proceedings of the Third International Conference on Advances in Natural Language Processing, LNCS 2389. Berlin: Springer-Verlag, 2002:219-227.
  • 5PANTEL P, LIND. A statistical corpora-based term extractor[ C]// Proceedings of the 14th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, LNCS 2056. Berlin: Springer-Verlag, 2001:34-46.
  • 6PAZIENZA M T, PENNNACCHIOTYI M, ZANZOTTO F M. Termi- nology extraction: an analysis of linguistic and statistical approaches [ C]//Proceedings of the NEMIS 2004 Final Conference on Knowl- edge Mining, SFSC 185. Berlin: Springer-Verlag, 2005: 255- 279.
  • 7BOUMA G. Normalized (pointwise) mutual information in colloca- tion extraction[ EB/OL]. [ 2013-10-10]. https://svn, spraakdata. gu. se/repos/gerlof/pub/www/Docs/npmi-pfd, pdf.
  • 8GILMORE P C, GOMORY R E. A linear programming approach to the cutting-stock problem(Part II)[J]. Oper- ations Research, 1963, 11 (6) : 863-887.
  • 9POLDI K C, ARENALES M N. Heuristic for the one-di- mensional cutting stock problem with limited multiple stock lengths [ J ]. Computer & Operations Research, 2009, 36 (6) :2074-2081.
  • 10SCHEITHAUER G, TERNO J. The modified integer round-up property of the one-dimensional cutting stock problem [ J 1. European Journal of Operational Research, 1995, 84(3) :562-571.

共引文献31

同被引文献27

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部